По-видимому, первыми, кто понял важность семиотического анализа софизмов, были сами софисты. Учение о речи, о правильном употреблении имён Продик считал важнейшим. Анализ и примеры софизмов часто встречаются в диалогах Платона. Аристотель написал специальную книгу «О софистических опровержениях», а математик Евклид — «Псевдарий» — своеобразный каталог софизмов в геометрических доказательствах.
Небольшое отступление: из данного текста видно, что софизмы являются определёнными логическими связками, а софисты используют в них не само понимание каких-либо предметов а логические понятия.
1.2 Виды софизмов:
а) софизм «учетверение термина» — силлогическое умозаключение, в котором нарушено правило простого категорического силлогизма: в каждом силлогизме должно быть только три термина. Умышленно ошибочное рассуждение строится с использованием нетождественных, но внешне сходных понятий: например, «Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего»,
б) софизм недозволенного процесса — силлогистическое умозаключение, в котором нарушено правило простого категорического силлогизма: термин, не распределенный (не взятый во всем объеме) в одной из посылок, не может быть распределен (взят во всем объеме) в заключении: «все птицы имеют крылья — некоторые яйцекладущие имеют крылья»;
в) софизм собирательного среднего термина — силлогистическое умозаключение, в котором нарушено правило простого категорического силлогизма: средний термин должен быть распределен (взят во всем объеме) по крайней мере в одной из посылок: «некоторые люди умеют играть на скрипке — все дипломаты-люди — все дипломаты умеют играть на скрипке».
1.3 Примеры софизмов
Полупустое есть то же, что и полуполное. Если равны половины, значит равны и целые. Следовательно, пустое есть то же, что и полное.
5 есть 2+3 («два и три»). Два — число чётное, три — нечётное, выходит, что пять — число и чётное и нечётное.
«Знаешь ли ты, о чём я хочу тебя спросить?» — «Нет». — «Знаешь ли ты, что добродетель есть добро?» — «Знаю». — «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь».
«Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше».
«Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего»
«Эта собака имеет детей, значит, она — отец. Но это твоя собака. Значит, она твой отец. Ты её бьёшь, значит, ты бьёшь своего отца и ты — брат щенят».
«Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога».
2 Булева алгебра
2.1 Джордж Буль
Решающий вклад в алгебраизацию логики сделал английский ученный Джордж Буль (1815-1864). В 1847 году вышла его работа с характерным названием – “математический анализ логики, являющийся опытом исчисления дедуктивного рассуждения”. Применяя алгебру (в дальнейшем она стала называться булевой алгеброй), можно было закодировать высказывание, истинность и ложность которых требовалось доказать, а потом оперировать ими, как в математики оперируют с числами. Буль ввел три основные операции: И, ИЛИ, НЕ, хотя алгебра допускает и другие операции - логические действия . Эти действия бинарны по своей сути, т. е. они оперируют с двумя состояниями: ”истина” - “ложь”. Данное обстоятельство позволило в дальнейшем использовать булеву алгебру для описания переключательных схем.Необходимо отметить, что окончательное оформление и завершение булева алгебра получила в работах последователей Дж. Буля: У C. Джевонса и Дж. Венна (Англия), Э. Шредера (Германия), П. С. Порецкого (Россия).
Итак, булева алгебра использует логические связки, но и софистика также использует логические связки, их связь очевидна, попробуем определить связь булевой алгебры с современными науками.
2.2 Булева алгебра
Булевой алгеброй называется непустое множество A с двумя бинарными операциями
(аналог конъюнкции), (аналог дизъюнкции), унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны следующие аксиомы:ассоциативность | ||
коммутативность | ||
законы поглощения | ||
дистрибутивность | ||
дополнительность |
Первые три аксиомы означают, что (A,
, ) является решёткой. Таким образом, булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй.Заметим, что булева алгебра использует бинарную систему как и информатика, что ж связь одного с другим очевидна, идем далее.
Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬a любого элемента a однозначно определено. Для всех a и b из A верны также следующие равенства:
дополнение 0 есть 1 и наоборот | ||
законы де Моргана | ||
инволютивность отрицания |