Смекни!
smekni.com

Защита рабочих, служащих (персонала) и населения при аварии с выбросом сильнодействующих ядовитых веществ (стр. 2 из 6)

Непрерывными называются процессы, в которых поступление сырья и выпуск продукции происходят непрерывно (или систематическими порциями) в течение длительного времени. При этом нет простоев оборудования, производительность аппаратов выше. Во всех точках аппарата соблюдаются постоянные температуры, концентрация веществ, давление и т. п., поэтому легко вести наблюдение за работой аппарата, механизировать загрузку сырья и выгрузку продукта, автоматизировать процесс. При этом, как правило, улучшается и качество продукции. Большинство химических производств уже работает непрерывно, оставшиеся периодические процессы постепенно заменяются непрерывными.

Однако в настоящее время еще нельзя сразу все производства перевести на непрерывные; в одних случаях это ухудшает качество продукции, в других — еще не найдены средства рациональной автоматизации и механизации процессов, особенно на маломощных и малогабаритных установках.

Снижение энергозатрат и максимальное использование теплоты химических реакций — важное направление химической техники. В настоящее время химические реакторы в большинстве крупнотоннажных производств сочетаются с теплообменными элементами, которые служат для нагрева исходных веществ до температуры реакции с одновременным охлаждением продуктов превращения или же для получения товарного водяного пара в котлах-утилизаторах за счет теплоты сильно экзотермических процессов. При этом теплообменники нередко имеют более сложное устройство, чем собственно химические реакторы, и образуют вместе с реакторами энергохимический агрегат. Соответственно происходит превращение химической технологии в энерготехнологию. Это тем более важно, что в настоящее время все острее и острее встает проблема обеспечения человечества дешевой, доступной и эффективно используемой энергией, поскольку традиционные ее источники (нефть, природный газ, уголь, древесина, торф и т. п.) расходуются быстрыми темпами и запасы этих источников уменьшаются гораздо быстрее, чем происходит естественное их восполнение.

Уменьшение числа стадий производства и переход к замкнутым (циклическим) системам приводит к снижению затрат на капитальное строительство и уменьшению себестоимости продукции. Так, прямое окисление метана до формальдегида позволит трехстадийный процесс (получение синтез-газа → синтез метанола → окисление метанола) заменить одностадийным. Переход к циклическим системам, например, в производстве серной кислоты с применением кислорода и повышенного давления позволит в 3 раза снизить число аппаратов в технологической схеме. При этом резко шитом количество диоксида серы в отходящих газах, т. е. одновременно решается и экологическая проблема. Сегодня пока еще не все многостадийные процессы могут быть переведены на одностадийные или циклические

Создание безотходных производств решает комплексно экологическую проблему и снижение себестоимости продукции благодаря полному использованию всех компонентов сырья. Одним из наиболее рациональныхпутейорганизациипроизводств, приближающихся к безотходным, служит циркуляция реакционной смеси и теплоносителей (воздуха, воды) в отдельных процессах и реакторах, а в особенности создание циркуляционных химико-технологических систем (ХТС) целого производства. Этой же цели служит кооперация чисто химических производств с другими (например, металлургическими), позволяющая перерабатывать не используемые ранее компоненты сырья в продукты, ценные для народного хозяйства. К безотходной технологии можно приближаться, вводя в технологические схемы специальные аппараты для очистки отходящих газов и сточных вод.

Оценивая каждое из указанных направлений в развитии химической техники, необходимо отметить, что во многих случаях следует комплексно использовать их, дополняя совершенствованием организации и управления производством, расширением и углублением научных исследований в области химической технологии, а также улучшением проектной деятельности соответствующих организаций.

Новым мощным средством повышения эффективности ряда производств следует считать внедрение атомной техники, плазменной и лазерной технологии, использование фотохимических, радиационно-химических и биохимических процессов.

Применение атомной энергии позволит получить недостижимые ранее температуры в сотни тысяч градусов и прежде всего низкотемпературную плазму (1000—10 000 К).

Использование плазмохимических процессов дает возможность осуществить эндотермические превращения, равновесие которых сильно смещено в сторону заданных целевых продуктов лишь при очень высокой температуре (10— 10 К). К таким процессам относятся: прямой синтез N0; получение ацетилена из метана и бензина; прямой синтез дициана; получение цианистого водорода из азота и углеводородов; синтезы разнообразных соединений фтора и т. п.

Лазерная техника позволит синтезировать твердые тела с тонко направленной кристаллической структурой и заданными свойствами, в том числе катализаторы, полупроводники, молекулярные сита, адсорбенты и т. п.

Фотохимические реакции, вызываемые или ускоряемые действием световой энергии, происходят как в природе, так и в промышленности. Хлорирование и бромирование углеводородов, синтез полистирола, сульфохлорирование парафинов, а также фотосинтез полистирола, сульфохлорирование парафинов, а также фотосинтез с помощью хлорофилла относятся к разряду таких процессов.

Радиационно-химические реакции, происходящие при воздействии ионизирующих излучений высокой энергии, позволят интенсифицировать химико-технологический процесс, проводить синтез органических соединений, осуществляемых пока только в природе (различные белковые препараты, ферментативные вещества и др.), или существенно улучшить структуру промышленных материалов (например, шин, пластических масс, биополимерных структур и т. п.).

Биохимическая технология занимает особое место, поскольку живая клетка обладает высокоактивными, тонкоселективными идеологическими катализаторами, по своей эффективности при низких (нормальных природных) температурах, несравненно превышающими катализаторы, используемые в химических производствах. Биологическими стилизаторами являются синтезируемые в организмах ферменты (или энзимы) и гормоны, а также поступающие в клетки извне витамины.

В настоящее время из биологических процессов промышленность использует в производстве лишь различные фирмы брожения с получением спиртов, ацетона, органических ми нот, биологический синтез белковых кормовых дрожжей, биологическую очистку сточных вод, бактериальное кучное выщелачивание забалансовых руд ряда цветных металлов и т. п. Нос эти процессы идут с участием различных микроорганизмов и, как правило, с низкой скоростью и потому не являются в достаточной степени эффективными. Однако умелое производственное применение катализа, осуществляемого в живой природе, позволило бы перестроить по-новому целые отрасли химической промышленности и расширить пищевые ресурсы. В перспективе использования биохимических процессов находятся проблемы фиксации атмосферного азота, синтеза белков и жиров, использование диоксида углерода для органического синтеза. Рациональное осуществление этих процессов позволило бы решить важнейшую проблему жизнеобеспечениячеловечествапутемполучения высококалорийных продуктов питания, создания кормовой базы па промышленной основе, получения соответствующих высокоэффективных лекарственных препаратов средств борьбы с вредителями сельского хозяйства.

авария химический ядовитый защита


1.3 СДЯВ – определение, поражающие факторы, воздействие СДЯВ на человека

СДЯВ - это токсические химические вещества, применяющиеся в народнохозяйственных целях и способные при утечке из разрушенных и поврежденных технологических емкостей, хранилищ и оборудования вызвать массовые поражения людей. Их, как правило, хранят в герметичных емкостях в сжиженном виде мил давлением собственных паров (6...12 атм) и подают по трубопроводам в технологические цехи. СДЯВ классифицируют:

1) по физико-химическим свойствам;

2) виду воздействия;

3) токсичности;

Физико-химические свойства определяют способность вещества переходить в поражающее состояние и создавать поражающие концентрации. К ним относятся:

1) агрегатное состояние: твердое, жидкое, газообразное при хранении и, как правило, пар, газ, аэрозоли - при выбросе. Газ - агрегатное состояние вещества, в котором кинетическая энергия теплового движения его частиц (атомов, молекул, ионов) значительно превосходит потенциальную энергию взаимодействий между ними, в связи с чем частицы пишутся свободно, равномерно заполняя весь предоставленный им объем. Пар - вещество в газообразном состоянии в условиях, когда оно может находиться в равновесии с тем же веществом в конденсированном состоянии (жидком или твердом). Аэрозоли различают тонко- и грубодисперсные. Аэрозоли тонко дисперсные - гетерогенные (неоднородные) системы, состоящие из взвешенных в воздухе, практически не оседающих, твердых или жидких частиц вещества размерами от 0,01 до 10 мкм. Аэрозоли грубодисперсные - гетерогенные системы, состоящие из взвешенных в воздухе быстрооседающих твердых или жидких частиц вещества размерами более 100 мкм;

2) растворимость в воде (хорошая растворимость -можно производить дегазацию водой, но, с другой стороны, -хорошо заражаются водоемы);