Uзм = 0,5Uф, т.е. если Uф = 220 В, то Uзм = 110 В, тогда Iч = 110 мА - смерть.
Вывод: в заземленных электрических сетях защитное заземление неэффективно и его применение в качестве единственной меры защиты недопустимо! В данных сетях применяют зануление.
== Вопрос 3 ==
Анализ эффективности применения защитного заземления в электрических сетях изолированных от земли.
Схема замещения:
Uзм = ;Если Rз® 0, то ® 1, а Uзм® 0.
Вывод: в сетях, изолированных от земли, защитное заземление является эффективной мерой защиты и может использоваться как единственная защита.
Лекция 15: Классификация и конструктивное исполнение заземляющих устройств.
Вопросы:
1. Классификация заземляющих устройств.
2. Конструктивное исполнение заземляющих устройств.
== Вопрос 1 ==
Классификация заземляющих устройств.
Каждая ЭУ должна быть непосредственно заземлена.
Заземлитель — проводник. имеющий непосредственный контакт с землей.
Магистраль заземления — проводник, имеющий два и более ответвлений.
Защитный (заземляющий) проводник — проводник, соединяющий заземляемые части ЭУ с заземлителем.
Заземляющее устройство — совокупность заземлителя и заземляющего проводника.
В зависимости от различных условий режимов работы, видов грунтов заземляющие устройства классифицируются:
1. по числу электродов:
- одиночные;
- групповые.
2. по месту размещения заземлителей:
- выносные;
- контурные.
3. по исполнению заземлителей:
- естественные;
- искусственные.
Выносные заземляющие устройства характеризуются тем, что его заземлитель вынесен за пределы площадки, на которой размещено оборудование или сосредоточен на некоторой части этой площадки, поэтому его еще называют сосредоточенным.
Недостаток: отдаленность от защитного оборудования.
Достоинство: возможность выбора места размещения электродов заземлителей, наименьшая удельная проводимость.
Контурные заземляющие устройства характеризуются тем, что электроды его заземлителя размещаются по контуру площадки, где находится оборудование, а также внутри этой площадки (распределенные заземляющие устройства).
Достоинство: возможность выравнивания потенциалов.
Недостаток: при ремонтных работах возрастает возможность нарушения непрерывности соединения.
В качестве искусственных заземлителей применяют:
1. вертикальные электроды:
¨ стальные трубы (диаметром 5-6 см, толщиной стенки не менее 3,5 мм и длиной 2,5-3 м);
¨ металлические уголки (40´40, 60´60 мм, высотой полки 4 мм и длиной 2,5-3 м);
¨ прутковую сталь (диаметром 10 мм и длиной до 10 м).
2. горизонтальные электроды:
¨ полосовую сталь (сечением 4´12 мм);
¨ круглую сталь (диаметром от 6 мм).
В плохо проводящих грунтах для обеспечения минимального сопротивления заземления используют:
¨ глубинные заземлители (полоска стали длиной 10-12 м);
¨ укладку вокруг электродов грунта с повышенной проводимостью (влажная глина);
¨ используют обработку почвы раствором поваренной соли (нежелательно, т.к. поваренная соль приводит к коррозии);
¨ используют устройство выносных заземлителей на участках с хорошей проводимостью.
Лекция 16: Анализ эффективности применения зануления в электрических сетях.
Вопросы:
3. Назначение, области применения, принцип действия зануления.
4. Анализ эффективности применения зануления в заземленных электрических цепях.
5. Анализ эффективности применения заземления в изолированных от земли электрических сетях.
== Вопрос 1 ==
Назначение, области применения, принцип действия зануления.
Зануление — преднамеренное электрическое соединение нетоковедущих частей электрической установки с глухозаземленной нейтралью источника трехфазного тока или с глухо-заземленным выводом источника однофазного тока с целью превращения замыкания на корпус в КЗ.
Нулевой защитный проводник — проводник, обеспечивающий вышеуказанное соединение.
Назначение зануления — устранение опасности поражения током человека, коснувшегося поврежденной электрической установки в следствие КЗ и быстрое срабатывание защиты.
Области применения зануления:
- трехфазные четырехпроводные сети с ГЗН (ЭУ до 1000 В);
- однофазные сети переменного тока с заземленным выводом источника тока.
== Вопрос 2 ==
Анализ эффективности применения зануления в заземленных электрических цепях.
Это – нормальная работа ЭУ в аварийном режиме.
Пусть фаза А замыкает на корпус. Ток замыкания потечет по нулевому заземленному проводнику (НЗП), по НРП на нейтраль, а с нейтрали на фазу А. Т.к., на пути тока замыкания малые сопротивления, то ток зануления равен току КЗ. ток КЗ вызывает срабатывание аппарата защиты (перегорает плавкая вставка), напряжение с ЭУ снимается. В данном случае ток КЗ не превышает тока ставки. Человек, касающийся поврежденной ЭУ, остается жив. Время перегорания плавкой вставки колеблется в интервале 0,02-0,5 сек.
Теперь рассмотрим аварийный случай.
Пусть фаза B замыкается на землю. Через человека потечет ток в 250 раз меньше (Rч = 1000 Ом, R0 = 40 Ом), и человек не будет поражен смертельно.
Зануление является эффективной мерой защиты в сетях с глухозаземленной нейтралью и его можно применять в качестве единственной.
== Вопрос 3 ==
Анализ эффективности применения заземления в изолированных от земли электрических сетях.
Пусть фаза А замыкает на корпус. Корпус находится под напряжением замыкания. Ток пойдет через НЗП на нейтраль и фазу А. Ток КЗ вызовет перегорание предохранителя, напряжение снято с ЭУ. Обеспечивается безопасность человека. При нормальном режиме работы сети, но аварийном режиме работы ЭУ зануление свои функции выполняет аналогично заземленным сетям.
В случае аварийного режима работы сети, если фаза В на земле, ток потечет через человека.
Зануление НЕ является эффективной мерой защиты в сетях, изолированных от земли.
Лекция 17: Анализ эффективности применения защитного отключения.
Вопросы:
1. Назначение, области применения, основные элементы устройства защитного отключения (УЗО).
== Вопрос 1 ==
Назначение, области применения, основные элементы устройства защитного отключения (УЗО).
Защитное отключение (ЗО) — быстродействующая защита от поражения электрическим током, путем автоматического отключения ЭУ от сети при возникновении в ней опасности поражения человека. Безопасность обеспечивается путем ограничения времени протекания через человека опасного тока.
ЗО применяется в ЭУ до 1000 В с изолированной или глухозаземленной нейтралью.
Основные требования, предъявляемые к УЗО:
¨ высокая чувствительность, т.е. способность реагировать на малое изменение входной величины;
¨ малое время отключения: tоткл = tсраб.УЗО + tсраб.автомата. Существующие конструкции УЗО гарантируют время отключения от 0,05 до 0,2 секунд;
¨ селективность действия, т.е. избирающее свойство — способность отключать неисправную ЭУ не отключать исправную;
¨ достаточная надежность;
¨ потребление минимальной энергии;
¨ эргономическая целесообразность.
Основные элементы УЗО:
1. прибор УЗО, куда входят: датчик, регистрирующий сигнал; преобразователь, сравнивающий с наперед установленным значением тока отключения и канал передачи аварийного сигнала (КПАС);
2. автоматический выключатель (исполнительный орган).