При ламинарном режиме движения существуют лишь продольные составляющие скоростей. В этом случае силы сопротивления движению возникают вследствие трения между слоями жидкости, т. е. зависят от вязкости жидкости и не зависят (почти) от состояния стенок.
|
Экспериментально подтверждается, что при турбулентном режиме движении потери напора по длине зависят от состояния стенок, ограничивающих поток. Если пропускать по трубе жидкость с различными скоростями, начиная с ламинарного режима и постепенно переходя к турбулентному, и одновременно измерять потери напора, то можно получить график зависимости потерь напора от скорости
Как и следовало ожидать, этот предел соответствует критической скорости
Обратный же переход от турбулентного режима к ламинарному осуществляется при почти одинаковом значении
Потери напора на трение по длине потока, возникающие при равномерном напорном движении жидкости в трубах, определяют по уравнению
где l – длина участка трубы, м; d–внутренний диаметр трубопровода, м; v – средняя скорость потока, м/сек; g–ускорение свободного падения, м/сек2;
Впервые формула (84) была получена эмпирическим путем в XIX в. и названа формулой Дарси-Вейсбаха. В дальнейшем указанная формула проверена теоретически на основе метода анализа размерностей.
В уравнении (84) остается не выясненным смысл безразмерного коэффициента
При горизонтальном расположении трубы
|
Для уточнения вопроса о потерях напора выделим в трубопроводе между сечениями 1-1 и 2-2 соосный цилиндр с радиусом а и длиной l (рис. 31).
Как оговорено выше, распределение скоростей в сечениях 1-1 и 2-2 одинаково, частицы жидкости двигаются без ускорений.
Напишем уравнение динамического равновесия рассматриваемого цилиндра
где
Поделив обе части уравнения на
Подставляя из уравнения (86) значение
или
Выразим
(так как
У стенки трубы, где
и тогда
Уравнение (91) есть общее выражение потерь напора при равномерном движении жидкости в трубах. Подставляя в уравнение (91) значения
Замечаем, что
Обозначим
где
Из уравнения (94) находим, что
Таким образом, коэффициент гидравлического трения
Потеринапораприламинарномдвижении.На основе изложенного выше для потерь напора по длине при ламинарном режиме движения жидкости в трубе получено следующее уравнение:
где
Так как
Выражение (97) называют формулой Пуазейля-Гагена (по имени ученых, получивших это уравнение).
Формула (97) показывает, что при ламинарном режиме потери напора пропорциональны средней скорости и не зависят от состояния стенок трубопровода.
Приравняв правые части уравнения Дарси-Вейсбаха (84) и выражения (97), получим
Таким образом, коэффициент гидравлического трения при ламинарном режиме обратно пропорционален числу Рейнольдса.
Потеринапорапритурбулентномдвижении.В инженерной практике чаще встречается турбулентный режим движения жидкости в трубах, которые труднее исследовать теоретически. Этот вопрос подвергся наиболее широким опытным исследованиям как со стороны советских, так и зарубежных ученых. Из-за сложности процессов, протекающих при турбулентном режиме, до сих пор не создано окончательной теории, которая бы вытекала из основных уравнений гидродинамики и согласовывалась с опытом. Напомним, что при турбулентном режиме наблюдается интенсивное вихреобразование, частицы жидкости описывают сложные траектории, местные скорости меняются во времени даже при постоянном расходе. Это явление называется пульсацией скорости. Часть кинетической энергии жидкости переходит в тепловую. Установившегося движения в строгом смысле нет. Поэтому введено понятие об осредненной скорости.