Смекни!
smekni.com

Исследование динамики ракеты при ее выходе из пусковой шахты при работающем двигателе (стр. 5 из 12)

;

- дельта-функция Кронекера

.

3. Уравнение энергии (сохранения энергии)

,

где

,

.

4. Уравнение состояния


Для записи соотношений - использованы следующие обозначения:

- давление;
- плотность;
- скорость;
- температура;
- время;
- полная энтальпия;
- статическая энтальпия;
‑ источниковый член для импульса;
- источниковый член для энергии;
- коэффициент динамической вязкости;
- коэффициент теплопроводности;
- оператор Гамильтона (набла);
- обозначает векторную величину.

Система уравнений Навье-Стокса образуют законченную математическую модель поведения жидкости (газа), детально и строго описывающую практически весь спектр течений. Однако на практике к ней необходимо добавить уравнения (совокупность эмпирических и иных соотношений) для модели турбулентности, чтобы система в целом могла быть решена.

При рассмотрении некоторых основных дифференциальных уравнений гидродинамики -, можно сделать вывод, что основные переменные

подчиняются обобщенному закону сохранения [4, 8]. Если обозначить зависимую переменную
, то обобщенное дифференциальное уравнение можно записать в следующем виде:

где

- коэффициент диффузии;

- источниковый член.

В обобщенное дифференциальное уравнение входят четыре члена: нестационарный, конвективный, диффузионный, источниковый. Зависимая переменная

обозначает различные величины, такие, как температура, составляющая скорости и т. д. При этом коэффициенту диффузии
и источниковому член
необходимо придать соответствующий каждой из этих переменных смысл.

Анализируя обобщенное дифференциальное уравнение сохранения и саму систему Навье-Стокса, записанную для наиболее общего случая трехмерного нестационарного движения вязкой жидкости, можно видеть, что среди данных выражений присутствуют дифференциальные уравнения в частных производных как первого, так и второго порядка. Дополнительный важный аспект - наличие нелинейной зависимости членов уравнений от переменных.

При историческом развитии динамики жидкости в рассмотрение был введен ряд классов течений, описываемых значительно более простыми системами, чем указанная выше -. Эти различные классы возникают при пренебрежении или ограничении некоторых свойств течений. Для течений, представляющих практический интерес, соответствующая классификация приведена в таблице 2.1. Классификация проведена по двум параметрам - вязкости и плотности. Несжимаемые течения, как правило, ассоциируются с течениями, скорость которых мала по сравнению со скоростью звука (

). Наоборот, для сжимаемых течений (
, либо разница температур в потоке велика) требуется рассмотреть полное уравнение неразрывности и учитывать полное уравнение энергии.

При рассмотрении влияния вязкости возникают три основных класса течений. В случае течений у хорошо обтекаемых тел свойства большей части потока и, в частности, распределение давления по телу довольно точно могут быть получены в предположении, что вязкость жидкости равна нулю. Для сжимаемых невязких течений имеет смысл дальнейшее подразделение на классы, зависящее от того, больше или меньше единицы число Маха

.

Таблице 2.1. Классификация течений

Вязкость Плотность
Несжимаемые(
)
Сжимаемые(
)
Невязкие течения(
)
Потенциальные течения(
)
Газовая динамика(
)
Течение в пограничных слоях(вязкость существеннавблизи поверхности) Ламинарные течения(очень малые числа
)Турбулентные течения(большие числа
)
Существенен перенос тепла
Отрывные течения(вязкость существенна везде) Ламинарные течения(малые числа
)Турбулентные течения(очень большие числа
)
Существенен перенос тепла

Для течений у хорошо обтекаемых тел эффекты вязкости существенны лишь в тонких пограничных слоях, расположенных в непосредственной близости к поверхности тела. Сила трения (сопротивление поверхностного трения) на теле определяется лишь вязкостью в пограничном слое. При ненулевой теплопроводности перенос тепла также определяется лишь течением в (тепловом) пограничном слое. Для течений с большими числами Рейнольдса вязкость не способна подавить возмущения, которые могут возникать внутри пограничного слоя. Следовательно, чтобы получить осредненные по времени параметры течения, требуется ввести некоторые эмпирические параметры, учитывающие турбулентность потока.

У плохо обтекаемых тел (например, автомобиля) на подветренной стороне возникают области отрывных течений, в которых существенны эффекты вязкости. Если числа Рейнольдса не слишком малы, течения в таких зонах являются турбулентными и часто нестационарными. Обычно для описания отрывных течений необходимо решать полную систему уравнений Навье-Стокса для сжимаемой и несжимаемой жидкостей.

Приведенные выше соображения позволяют сильно упростить решение задачи при соответствующих обоснованных допущениях. Однако даже в подобных идеализированных случаях точное математическое решение существует только для простых тел (пластина, сфера, цилиндр, клин).

Прямым следствием невозможности точно разрешить систему уравнений Навье-Стокса становится попытка найти инструмент отыскания приближенного решения задач газовой динамики даже в самой общей постановке. Подобным инструментом выступают численные методы решения, предлагающие гибкий и достаточно прозрачный математический аппарат. Кроме того, существует возможность создать метод приближенных вычислений с заранее оговоренными свойствами и границами применимости.

3.3 Компьютерные пакеты для численного решения задач газовой динамики

Численные методы, применяемые для решения задач газовой динамики, по сути, являются инструментом, позволяющим использовать имеющуюся математическую модель – систему Навье-Стокса. Их использование в известном смысле расширило возможности исследователей, для которых стало возможным моделировать поведение жидкости или газа при самых разнообразных условиях, подчас невыполнимых в реальном мире. С этой целью создавались программные алгоритмы, которые затем непосредственно использовались для расчетов на компьютерах. Однако число пользователей ограничивалось узким кругом специалистов, непосредственно занимающихся вычислительной газовой динамикой.

Естественным шагом в эволюции численного моделирования динамики жидкости и газа стало создание расчетных пакетов (CFD-пакетов или комплексов), ориентированных на широкую аудиторию пользователей – научных работников, студентов, инженеров и т. д. В таком виде математический аппарат, заключенный в численные методы, стал действительно универсальным, а с учетом стремительного развития вычислительной техники и мощным средством в проведении численных расчетов по газовой динамике. Кроме того, при использовании CFD-пакетов становится необязательным обладать глубокими знаниями по численным методам, способам дискретизации и т.п.