Смекни!
smekni.com

Форма, размеры и движения Земли и их геофизические следствия. Гравитационное поле Земли (стр. 1 из 8)

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Тема: « Форма , размеры и движения Земли и их геофизические следствия. Гравитационное поле Земли. Основные характеристики, их изменения по широте, глубине и высоте над поверхностью Земли. Гравитационные аномалии. »

Выполнил: студент заочного отделения 1 курса

специальность метеорология Бондарчук А.В.

План

· Третья планета в галактике.

· Орбитальные характеристики планет.

· Внутренне строение Земли.

· Земная кора и её строение.

· Газовая оболочка Земли.

· Закон всемирного тяготения.

· Форма Земли и гравитация.

· Аномалии силы тяжести.

· Система Земля – Луна.

· Физические основы гравитационных аномалий.

· Первая в мире гравикарта.

· Список использованной литературы.

Третья планета в галактике.

Солнечная система включает девять крупных планет, которые со своими 57 спутниками обращаются вокруг массивной звезды по эллиптическим орбитам (рис. 1). По своим размерам и массе планеты можно разделить на две группы – планеты земной группы, расположенные ближе к Солнцу, – Меркурий, Венера, Земля и Марс и планеты-гиганты – Юпитер, Сатурн, Уран и Нептун, находящиеся на значительно более удаленных орбитах от центральной звезды. Последняя из известных планет Плутон своей орбитой с радиусом около 6 млрд. км очерчивает границы Солнечной системы. Плутон не относится к планетам-гигантам, его масса почти в десять раз меньше массы Земли. Аномальные характеристики этой крошечной планеты позволяют рассматривать ее как бывший спутник Нептуна.

Кроме больших планет между орбитами Марса и Юпитера вращается более 2300 малых планет – астероидов, множество более мелких тел – метеоритов и метеорной пыли, а также несколько десятков тысяч комет, двигающихся по сильно вытянутым орбитам, некоторые из которых далеко выходят за границы Солнечной системы.

Рис. 1. Солнечная система

Все планеты и астероиды обращаются вокруг Солнца в направлении движения Земли – с запада на восток. Это так называемое прямое движение. Основные закономерности движения планет полностью определяются законами Кеплера. Рассмотрим эти законы и охарактеризуем основные элементы эллиптических орбит. Согласно первому закону, все планеты обращаются вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце. На рис. 2 показаны элементы планетных орбит с Солнцем (С) в фокусе. Линия АП называется линией апсид, крайние точки которой афелий (А) и перигелий (П) характеризуют наибольшее и наименьшее удаление от Солнца.Расстояние планет( Р ) на орбите от Солнца (гели­оцентрическое расстояние) определяется радиусом-вектором r = СР. Отношение полуфокального расстояния (с) к большой полуоси (а) называется эксцентриситетом орбиты: .

Если обозначить через q перигельное расстояние, а через Q афелийное расстояние, то их значения легко определить из выражений: ;

.

Тогда, определив большую полуось (а), мы найдем среднее годичное расстояние планеты до Солнца:

Рис.3.Площади, описываемые радиус-вектором планеты

.

Cреднее гелиоцентрическое расстояние Земли от Солнца равно 149,6 млн. км. Эта величина называется астрономической единицей и принимается за единицу измерений расстояний в пределах Солнечной системы.

Согласно второму закону Кеплера ра­диус-вектор планеты описывает площади, прямо пропорциональные промежуткам времени. Если обозначить через S1 площадь перигелийного сектора (рис. 3), а через S2 – площадь афелийного сектора, то их отношение будет пропорционально временам Dt1 и Dt2, за которые планета прошла соответствующие отрезки дуг орбиты: .

Отсюда следует, что секториальная скорость :

величина постоянная.

Время, в течение которого планета сделает полный оборот по орбите, называется звездным, или сидерическим периодом Т (рис. 3). За полный оборот радиус-вектор планеты опишет площадь эллипса:

.

Поэтому секториальная скорость :

оказывается наибольшей в перигелии, а наименьшей – в афелии. Испо­льзуя второй закон, можно вычислить эксцентриситет земной орбиты по наибольшему и наименьшему суточному смещению Солнца по эклиптике, отражающему движение Земли . Земля в перигелии пребывает в начале января (hmax = 61'), а в афелии в начале июля (hmax = 57'). По второму закону Кеплера скорость Земли в афелии и перигелии определяется из выражений: ; .

Таким образом, орбита Земли лишь ненамного отличается от окружности.

Найденные из наблюдательной астрономии законы Кеплера показали, что Солнечная система представляет собой механическую систему с центром, находящимся в солнечной массе.

Законы Кеплера послужили Ньютону основой для вывода своего знаменитого закона всемирного тяготения, который он сформулировал так: каждые две материальные частицы взаимно притягиваются с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

Математическая формулировка этого закона имеет вид: ,

где M и m – взаимодействующие массы, r – расстояние между ними; G – гравитационная постоянная. В системе СИ G = 6,672·10-11 м3·кг-1·с-2. Физический смысл гравитационной постоянной заключается в следующем: она характеризует силу притяжения двух масс весом в 1 кг каждая на расстоянии в 1 м. Величина G впервые была определена в 1798 г. английским физиком Кавендишем с помощью крутильных весов.

Закон Ньютона решил задачу о характере действия силы, управляющей движением планет. Это сила тяготения, создаваемая центральной массой Солнца. Именно эта сила не дает планетам разлететься, а сохраняет их в связной системе последовательных орбит, по которым как на привязи сотни миллионов лет кружатся большие и малые планеты.

Воспользуемся законом тяготения и определим массу Земли, полагая, что взаимодействуют две массы – Земли (М) и некоторого тела, лежащего на ее поверхности. Сила притяжения этого тела определяется законом Ньютона: .

Но одновременно из второго закона механики эта же сила равна произведению массы на ускорение:

,

где g – ускорение силы тяжести; R – радиус Земли.Приравнивая правые части выражений: ,

найдем выражение для определения массы Земли:

Подставив известные значения G = 6,672·10-11 м3·кг-1·с-2, g = 9,81 м/с2, R = 6,371·106 м, в итоге получим MЗ= 5,97·1024 кг, или в граммах: M3 = 5,97·1027 г. Такова масса Земли.

В настоящее время для более точного определения массы и фигуры планет и их спутников используются параметры орбиты искусственных спутников, запускаемых с Земли.

Орбитальные характеристики планет.

Физические условия на поверхности каждой из девяти планет всецело определяются их положением на орбите относительно Солнца. Ближайшие к светилу четыре планеты – Меркурий, Венера, Земля и Марс – имеют сравнительно небольшие массы, заметное сходство в составе слагающего их вещества и получают большое количество солнечного тепла, ощутимо влияющего на температуру поверхности планет. Две из них – Венера и Земля – имеют плотную атмосферу, Меркурий и Марс атмосферы практически не имеют.

Планеты-гиганты Юпитер, Сатурн, Уран и Нептун значительно удалены от Солнца, имеют гигантские массы и плотную мощную атмосферу. Все они отличаются высокой осевой скоростью вращения. Солнечное тепло почти не достигает этих планет. На Юпитере оно составляет 0,018·103 Вт/м2, на Нептуне – 0,008·103 Вт/м2.

Большая часть массы вещества Солнечной системы сосредоточена в самом Солнце – более 99%. На долю планет приходится менее 1% общей массы. Остальное вещество рассеяно в астероидах, кометах, метеоритах, метеорной и космической пыли.

Все планеты имеют сравнительно небольшие размеры и в сравнении с расстояниями между ними их можно представлять в виде материальной точки. Из курса физики известно, что произведение массы тела на его скорость называется импульсом: ,

а произведение радиуса-вектора на импульс – моментом импульса: .

Из приведенного выражения видно, что скорость V движения планеты по эллиптической орбите меняется вместе с изменением радиуса-вектора r. При этом на основании второго закона Кеплера имеет место сохранение моментов импульса: .

Видно, что при увеличении r1 скорость V1 должна уменьшаться, и наоборот (масса т планеты неизменна). Если выразить линейную скорость V через угловую скорость w : ,

то выражение для момента импульса планеты примет вид:

.

Из последней формулы следует, что при сжатии вращающихся систем, т. е. при уменьшении r и постоянстве т, угловая скорость вращения w неизбежно возрастает.

В таблице приведены орбитальные параметры планет. Хорошо видно, как по мере возрастания радиуса орбиты (гелиоцентрического расстояния) уменьшается период обращения и, следовательно, скорость движения планет.