оглавление
1.общие сведения.................................................................................................. 4
физические свойства вольфрама:........................................................................ 4
2.Области применения......................................................................................... 4
3. основные минералы вольфрама...................................................................... 5
4.оценка месторождений при поисках и разведке............................................ 5
5. разработка месторождений.............................................................................. 8
6.Получение металлического вольфрама и его соединений............................ 9
Вольфрам входит в 4-ю группу периодической системы Менделеева. Его атомный номер 74, атомная масса 183,85. Природный вольфрам состоит из смеси пяти изотопов
Массовые числа изотопов: 180 182 183 184 186
Содержание природной смеси 0,13 26,31 14,28 30,64 28,64
соответственно %
физические свойства вольфрама:
плотность 19,3 г/см3 твердость по Бринеллю 488 кг/мм2 температура плавления 3410 оС, температура кипения 5930 оС,
электрическое сопротивление при 20 оС 5,5.10 – 4, при 2700оС 90,4.10-4.
Валентность переменчивая от2 до6 наиболее устойчив 6-валентный вольфрам 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют. Радиус атома вольфрама- 0,141 нм.
Кларк вольфрама земной коры составляет по Виноградову, 0,00013 г/т. его среднее содержание в горных породах, г/т: ультраосновных – 0,00001, основных – 0,00007, средних – 0,00012, кислых – 0,00019.
Вольфрам является одним из наиболее тяжелых и самым тугоплавким металлом. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 оС хорошо поддается ковке и может быть вытянут в тонкую нить.
Вольфрам имеет высокую стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в ангидрид вольфрамовой кислоты; в соляной, серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности. В смеси азотной плавиковой кислоты растворяется, образуя вольфрамовую кислоту. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфроматы, перекисные соединения с общей формулой ME2WOX. Соединения с галогенами, серой и углеродом.
Общие мировые запасы вольфрама (без России) составляют около 7,5 млн. тонн, подтвержденные запасы около 4 млн. тонн. Наиболее крупными запасами обладают: Казахстан, Китай, Канада и США. Мировое производство вольфрама составляет 18-20 тысяч тонн в год в т.ч. в Китае 10, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортеры вольфрама: Китай, Корея, Австрия. Главные импортеры: США, Япония, Германия Великобритания.
Вольфрам находит широкое применение в производстве сталей в качестве легирующей добавки, в твердых жаропрочных сплавах, в электротехнике, в производстве кислотоупорных и специальных сплавов, в химической промышленности.
Долгое время более 60 % вольфрама использовалось в металлургии для изготовления инструментальных, нержавеющих легированных и специальных сталей. Присадка вольфрама к стали 1-20 % придает ей прочность, твердость, тугоплавкость, самозакаливаемость, кислотоупорность, повышает предел упругости и сопротивление растяжению. В настоящее время 55 % вольфрама в виде карбида идет на изготовление твердых сплавов, используемых для буровых коронок фельер для волочения проволоки, штампов, пружин, деталей пневматических инструментов, клапанов двигателей. Твердые сплавы, состоящие из вольфрама (3-15 %), хрома (25-35 %) и кобальта (45-65 %) с примесью 0,5-2,7 % углерода, применяются для покрытия сильно изнашивающихся деталей. Сплавы вольфрама медью и серебром являются хорошими контактными материалами и применяются в рабочих частях рубильников, выключателей и др. Сплав вольфрама (85-95 %) с никелем и медью обладающий высокой плотностью, используется в радиотерапии для устройства защитных экранов от гамма лучей.
Металлический вольфрам применяется для изготовления нитей накаливания в электролампах, электродов для водородной сварки, заменяя платину, для нагревателей высокотемпературных электропечей, работающих при температуре свыше 3000 оС, термопар, роторов в гироскопах оптических пирометров для катодов рентгеновских трубок, электровакуумной аппаратуры, радиоприборов, выпрямителей и гальвонометров.
Соединения вольфрама применяются в качестве красителей, для придания тканям огнестойкости и водоустойчивости.
В США вольфрам используется (%) 68 – в производстве машин и оборудования для металлообрабатывающей, горнодобывающей и строительной промышленности, 12 – для изготовления ламп и светильников, 12 – в электронной промышленности и транспорте, 5 – в химических отраслях и 3 – в прочих областях.
3. основные минералы вольфрама
Известно 20 вольфрамовых минералов. Наиболее распространены минералы группы вольфрамита и шеелит, имеющие промышленное значение. Реже встречается сульфид вольфрамита – тунгстенсит (WS2), а также окисноподобные соединения – тунгстит, ферро - и купротунгстит, гидротунгстит. Довольно широко распространены псиломеланы, вады с высоким содержанием вольфрама.
В экзогенных условиях образуются минералы группы вульфенита: штольцит – bPbWO4 изоструктурный с шеелитом и его моноклинная разновидность-распит - aPbWO4 .
Группа вольфрамита представлена минералами изоморфного ряда MnWO4 и FeWO4.
4.оценка месторождений при поисках и разведке
На площадях получивших в результате региональных исследований оценку прогнозных ресурсов вольфрамого сырья по категориям Р3и Р2 проводят поисковые работы.
Целью поисков является выявление месторождений вольфрама. Для этого проводят изучение перспективной площади с составлением прогнозных карт масштаба 1:50 000 на геолого-структурнофациальной основе, оконтуривание орудинения и установление факторов контролирующих его локализацию. Предварительно оценивают параметры рудных тел на поверхности и распространения оруденения на глубину залегания рудопродуцирующих магматических образований, размеры, форму, комплексность и продуктивность геохимических аномалий, содержание вольфрама и других сопутствующих элементов в рудных телах, степень окисленности руд, контуры зон, участков рудных пересечений с промышленными параметрами.
На участках развития потенциального оруденения оценивают прогнозные ресурсы по категории Р2 и частично – Р1 и при хороших геолого-экономических показателях переходят к оценочным работам. Целью оценочных работ является установления промышленного значения оруденения и выбор объектов под проектирование разведки и эксплуатации
Результатом оценочных работ является наличие или отсутствие коммерческого открытия, которое обосновывают:
Геологическая карта участка в масштабах 1 : 5 000 – 1 : 2 000.
Структурно-литолого-фациальные карты с разрезами.
Планы, разрезы и проекции рудных тел.
Карта поисково-оценочных критериев и признаков с отображением факторов рудолокализации: рудовмещающих литологических комплексов и структур, фаций метасамотитов контуров рудных тел и минерализационных зон, элементов зональности минеральных типов руд, литологических ореолов элементов-индикаторов орудинения, комплексных геофизических аномалий.
Прогнозная карта на структурно-фациальной основе с контурами промышленных и предполагаемых рудных тел и принципиальной моделью месторождения.
Подсчитанные ресурсы категории Р1, запасы категории С2 и частично С1 .
Данные о масштабах месторождения и качестве руд.
Технико-экономические расчеты целесообразности разведки и отработки месторождения.
Основная цель разведки, как начальной стадии разработки - обоснование промышленного значения месторождения и ожидаемых технико-экономических показателей, составления проекта освоения.
Для этого устанавливают:
Формы и размеры рудных тел и их запасы по категориям С1 и С2, иногда и категории В.
Границы месторождения, его геолого-структурные особенности, прогнозные ресурсы категории Р1.
Среднее содержание и фазовый состав основных и сопутствующих компонентов.
Технологические свойства руд, типы и сорта руд, степень извлечения вольфрама и сопутствующих компонентов по лабораторным и при необходимости – укрупненным пробам.
Горнотехнические условия отработки.
Гидрогеологическую обстановку месторождения.
Геолого-экономические условия месторождения, водо- и энергоснабжение будущего предприятия, капиталовложения, производительность по руде и концентратам, себестоимость продукции, рентабельность.
Технология ведения геологоразведочных работ на вольфрам зависит от задач той или иной стадии, ландшафтно-геохимической обстановки, вероятного промышленного типа оруденения.
Для выявления и оценки вольфрамовых месторождений используются геологические геохимические и геофизические методы, горно-буровые работы и опробование, минералого-петрографические и аналитические методы исследований. В зависимости от детальности изучения меняется роль и соотношение применяемых методов.
Важное значение при поисках вольфрама приобрели дистанционные методы, основанные на интерпретации космо- и аэрофотоснимков, снятых в разных спектрах. Эти данные дают важный материал для расшифровки морфоструктурных позиций потенциальных рудных объектов, позволяя более централизованно ориентировать поиски.
Визуальные поиски позволяют выявлять прямые признаки оруденения в открытых и частично открытых районах. Этому способствуют свойства вольфрамита и шеелита, длительно сохраняющихся в условиях денудации. Разрушение вольфрамита в зоне окисления сопровождается образованием по нему тукнгстита или гидроксдов железа, которые содержат повышенные концентрации вольфрама диагностика вольфрамита обычно не вызывает затруднений. Шеелит устойчив в зоне окисления, но иногда переходит в трудно определяемую мучнистую разновидность. Поэтому для применяются люминоскопы, использующие способность шеелита к свечению в ультрафиолетовых лучах.