Смекни!
smekni.com

Сущность и планирование финансовых капитальных вложений (стр. 10 из 12)

– относительной новизной и недостаточной проработанностью математических методов анализа инвестиционного проекта в условиях неопределенности;

– низкой осведомленностью топ-менеджеров предприятий и специалистов в области финансов о новых математических подходах формализации и одновременной обработки разнородной информации (детерминированной, интервальной, лингвистической, статистической) и о возможностях построения на базе этих подходов специализированных методик.

Обширный опыт отечественных и зарубежных исследователей убедительно свидетельствует о том, что вероятностный подход не может быть признан надежным и адекватным инструментом решения слабоструктурированных задач /8,10,11,22,23/, к которым принадлежат и задачи управления реальными инвестициями. В принципе, любая попытка использования статистических методов для решения такого рода задач есть не что иное, как редукция к хорошо структурированным (хорошо формализованным) задачам, при этом такого рода редукция существенно искажает исходную постановку задачи. Ограничения и недостатки применения «классических» формальных методов при решении слабоструктурированных задач являются следствием сформулированного основоположником теории нечетких множеств Л.А. Заде /18/ «принципа несовместимости»: «…чем ближе мы подходим к решению проблем реального мира, тем очевиднее, что при увеличении сложности системы наша способность делать точные и уверенные заключения о ее поведении уменьшаются до определенного порога, за которым точность и уверенность становятся почти взаимоисключающими понятиями» /18,19/.

Поэтому некоторыми зарубежными и отечественными исследователями разрабатываются методы оценки эффективности и риска инвестиционных проектов на основе аппарата ТНМ. В данных методах вместо распределения вероятности применяется распределение возможности, описываемое функцией принадлежности нечеткого числа.

Методы, базирующиеся на теории нечетких множеств, относятся к методам оценки и принятия решений в условиях неопределенности. Их использование предполагает формализацию исходных параметров и целевых показателей эффективности инвестиционного проекта (в основном, NPV) в виде вектора интервальных значений (нечеткого интервала), попадание в каждый интервал которого, характеризуется некоторой степенью неопределенности. Осуществляя арифметические и др. операции с такими нечеткими интервалами по правилам нечеткой математики, эксперты и ЛПР получают результирующий нечеткий интервал для целевого показателя /14,23,33,37/. На основе исходной информации, опыта и интуиции эксперты часто могут достаточно уверенно количественно охарактеризовать границы (интервалы) возможных (допустимых) значений параметров и области их наиболее возможных (предпочтительных) значений.

Также к методам, базирующихся на теории нечетких множеств, можно, в качестве частного случая, отнести давно и широко известный интервальный метод /8,9,33/. Данный метод соответствует ситуациям, когда достаточно точно известны лишь границы значений анализируемого параметра, в пределах которых он может изменяться, но при этом отсутствует какая-либо количественная или качественная информация о возможностях или вероятностях реализации различных его значений внутри заданного интервала. В соответствии с данным методом, входные переменные инвестиционного проекта задаются в виде интервалов, функции принадлежности которых, являются классическими характеристическими функциями множества, поэтому далее возможно прямое применение правил нечеткой математики для получения результирующего показателя эффективности инвестиционного проекта в интервальном виде. В интервальном методе за уровень (степень) риска предлагается принимать размер максимального ущерба, приходящегося на единицу неопределенности /8/, т.е.:

(1.2) или
, (3)

где qN – требуемое значение параметра;

qmin – минимальное значение параметра;

qmax – максимальное значение параметра;

P – уровень (степень) риска, или отношение расстояния от требуемой величины до ее минимального (максимального) значения к интервалу между ее максимальным и минимальным значениями.

Конкретный вариант выражения (2) – (3) зависит от используемого критерия эффективности. Например, для оценки риска инвестиционного проекта по критерию NPV необходимо использовать выражение (2), по критерию DPP – (3). Такой способ определения риска полностью согласуется с геометрическим определением вероятности, однако при предположении, что все события внутри отрезка [qmin; qmax] равновероятны. Очевидно, что данное предположение нельзя назвать отражающим реальную действительность.

При наличии дополнительной информации о значениях параметра внутри интервала, когда, например, известно, что значение a более возможно, чем b, математическая формализация неопределенностей может быть адекватно реализована с помощью нечетко-интервального подхода. При использовании математического аппарата ТНМ экспертам необходимо формализовать свои представления о возможных значениях оцениваемого параметра инвестиционного проекта в терминах задания характеристической функции (функции принадлежности) множества значений, которые он может принимать. При этом от экспертов требуется указать множество тех значений, которые, по их мнению, оцениваемая величина не может принять (для них характеристическая функция равна 0), а затем проранжировать множество возможных значений по степени возможности (принадлежности к данному нечеткому множеству). После того как формализация входных параметров инвестиционного проекта произведена, можно рассчитать распределение возможности

выходного параметра (показателя эффективности инвестиционного проекта) y по «α-уровнему принципу обобщения» или «принципу обобщения Заде»:

, (4)

где

– возможность того, что нечеткая величина
примет значение
;
– функциональная зависимость выходного параметра ИП (NPV, PI, DPP, IRR, MIRR и др.) от входных параметров.

Ниже перечислены основные преимущества нечетко-интервального подхода к оценке эффективности и риска инвестиционных проектов по сравнению с вышеперечисленными методами /14/:

1. Данный подход позволяет формализовать в единой форме и использовать всю доступную неоднородную информацию (детерминированную, интервальную, статистическую, лингвистическую) /1,14,16/, что повышает достоверность и качество принимаемых стратегических решений;

2. В отличие от интервального метода, нечетко-интервальный метод аналогично методу Монте-Карло /14/, формирует полный спектр возможных сценариев развития инвестиционного проекта, а не только нижнюю и верхнюю границы /28/, таким образом, инвестиционное решение принимается не на основе двух оценок эффективности инвестиционного проекта, а по всей совокупности оценок;

3. Нечетко-интервальный метод позволяет получить ожидаемую эффективность инвестиционного проекта как в виде точечного значения, так и в виде множества интервальных значений со своим распределением возможностей, характеризующимся функцией принадлежности соответствующего нечеткого числа /14/, что позволяет оценить интегральную меру возможности получения отрицательных результатов от инвестиционного проекта, т.е. степень риска инвестиционного проекта /29/;

4. Нечетко-интервальный метод не требует абсолютно точного задания функций принадлежности, так как в отличие от вероятностных методов /20/, результат, получаемый на основе нечетко-интервального метода, характеризуется низкой чувствительностью (высокой робастностью (устойчивостью)) к изменению вида функций принадлежности исходных нечетких чисел /1,5,14,16/, что в реальных условиях низкого качества исходной информации делает применение данного метода более привлекательным;

5. Вычисление оценок показателей инвестиционного проекта на основе нечетко-интервального метода оказывается эффективным в ситуациях, когда исходная информация, основана на малых статистических выборках, т.е. в случаях, когда вероятностные оценки не могут быть получены, что всегда имеет место при предварительной оценке долгосрочных инвестиций и достаточно часто – при последующем перспективном анализе, проводимом при отсутствии достаточной информационной базы /14,37/;

6. Реализация нечетко-интервального метода на основе интервальной арифметики, предоставляет широкие возможности для применения данного метода в инвестиционном анализе, что обусловлено фактически отсутствием конкурентоспособных подходов к созданию надежного (в смысле гарантированности) и транспортабельности (по включению) инструментального средства для решения численных задач /1/;

7. Характеризуется простотой выявления экспертных знаний /14,33/.

Также нечетко-интервальный подход имеет преимущества в решении задач формирования оптимального портфеля инвестиционных проектов. Для решения задачи формирования оптимального портфеля ИП разработано большое количество моделей формирования оптимального портфеля ИП [5,6,29], отличающихся друг от друга видом целевых функций, свойствами переменных, используемыми математическими методами, учетом неопределенности. Как правило, для решения данной задачи используется аппарат линейного математического программирования в условиях определенности исходной информации: задача формулируется обычно как задача максимизации (или минимизации) заданной функции на заданном множестве допустимых альтернатив, которое описывается системой равенств или неравенств. Например: