Смекни!
smekni.com

Сущность и планирование финансовых капитальных вложений (стр. 9 из 12)

Если существует множество вариантов сценариев развития, но их вероятности не могут быть достоверно оценены, то для принятия научно обоснованного инвестиционного решения по выбору наиболее целесообразного инвестиционного проекта из совокупности альтернативных инвестиционных проектов в условиях неопределенности применяются методы теории игр, некоторые из которых рассмотрены ниже:

Критерий MAXIMAX не учитывает при принятии инвестиционного решения риска, связанного с неблагоприятным развитием внешней среды.

Критерий MAXIMIN (критерий Вальда) минимизирует риск инвестора, однако при его использовании многие ИП, являющиеся высокоэффективными, будут необоснованно отвергнуты. Этот метод искусственно занижает эффективность инвестиционного проекта, поэтому его использование целесообразно, когда речь идет о необходимости достижения гарантированного результата.

Критерий MINIMAX (критерий Сэвиджа), в отличие от критерия MAXIMIN, ориентирован не столько на минимизацию потерь, сколько на минимизацию сожалений по поводу упущенной прибыли. Он допускает разумный риск ради получения дополнительной прибыли. Пользоваться этим критерием для выбора стратегии поведения в ситуации неопределенности можно лишь тогда, когда есть уверенность в том, что случайный убыток не приведет фирму (инвестиционный проект) к полному краху.

Критерий пессимизма-оптимизма Гурвица /10/ устанавливает баланс между критерием MAXIMIN и критерием MAXIMAX посредством выпуклой линейной комбинации. При использовании этого метода из всего множества ожидаемых сценариев развития событий в инвестиционном процессе выбираются два, при которых ИПj достигает минимальной и максимальной эффективности. Выбор оптимального ИП по показателю NPV осуществляется по формуле:

, (2)

где

– коэффициент пессимизма-оптимизма, который принимает значение в зависимости от отношения ЛПР к риску, от его склонности к оптимизму или к пессимизму. При отсутствии ярко выраженной склонности λ = 0,5. При λ = 0 (точка Вальда) критерий Гурвица совпадает с максиминым критерием, при λ = 1 – с максимаксным критерием.

Общий недостаток рассмотренных выше методов теории игр состоит в том, что предполагается ограниченное количество сценариев развития (конечное множество состояний окружающей среды).

Метод построения «дерева решений» сходен с методом сценариев и основан на построении многовариантного прогноза динамики внешней среды. В отличие от метода сценариев он предполагает возможность принятия самой организацией решений, изменяющих ход реализации ИП и использующих специальную графическую форму представления результатов («дерево решений»). Данный метод может применяться в ситуациях, когда более поздние решения сильно зависят от решений, принятых ранее, и в свою очередь, определяют сценарии дальнейшего развития событий /37/. Основными недостатками данного метода при его практическом использовании являются, во-первых, техническая сложность данного метода при наличии больших размеров исследуемого «дерева» решений, так как затрудняется не только вычисление оптимального решения, но и определение данных, во-вторых, присутствует слишком высокий субъективизм при назначении оценок вероятностей.

Имитационное моделирование по методу Монте-Карло является наиболее сложным, но и наиболее мощным методом оценки и учета рисков при принятии инвестиционного решения. В связи с тем, что в процессе реализации этого метода происходит проигрывание достаточно большого количества вариантов, то его можно отнести к дальнейшему развитию метода сценариев. Метод Монте-Карло дает наиболее точные и обоснованные оценки вероятностей по сравнению с вышеописанными методами. Однако, несмотря на очевидную привлекательность и достоинства метода Монте-Карло с теоретической точки зрения, данный метод встречает серьезные препятствия в практическом применении, что обусловлено следующими основными причинами:

– высокая чувствительность получаемого результата по методу Монте-Карло к законам распределения вероятностей и видам зависимостей входных переменных инвестиционного проекта /20,22/;

– несмотря на то, что современные программные средства позволяют учесть законы распределения вероятностей и корреляции десятков входных переменных, между тем оценить их достоверность в практическом исследовании обычно не представляется возможным, так как, в большинстве случаев, аналитики измеряют вариации основных переменных макро- и микросреды, подбирают законы распределения вероятностей и статистические связи между переменными субъективно, поскольку получение качественной статистической информации не представляется возможным по самым различным причинам (временным, финансовым и т.д.) /8/, особенно для уникальных инвестиционных проектов в реальном секторе экономики;

– вследствие двух вышеописанных причин, точность результирующих оценок, полученных по данному методу, в значительной степени зависит от качества исходных предположений и учета взаимосвязей входных переменных, что может привести к значимым ошибкам в полученных результатах (например, переоценке или недооценке риска инвестиционного проекта), а, следовательно, к принятию ошибочного инвестиционного решения;

Таким образом, проведенный анализ традиционных методов оценки эффективности инвестиционного проекта в условиях риска и неопределенности свидетельствует об их теоретической значимости, но ограниченной практической применимости для анализа эффективности и риска инвестиционного проекта из-за большого числа упрощающих модельных предпосылок, искажающих реальную среду проекта.

Обширная практика проведения реальных прогнозных расчетов ИП свидетельствует о необходимости всестороннего учета различных видов неопределенности при оценке, планировании и управлении инвестиционными проектами. Действительность такова, что влияние факторов неопределенности на инвестиционные проекты приводит к возникновению непредвиденных ситуаций, приводящих к неожиданным потерям, убыткам, даже в тех проектах, которые первоначально признаны экономически целесообразными для предприятия, поскольку не учтенные в инвестиционном проекте негативные сценарии развития событий, пусть и малоожидаемые, тем не менее, могут произойти и сорвать реализацию инвестиционного проекта /14,28,29/. Учет неопределенности информации и его эффективность напрямую зависят от выбора математического аппарата, определяемого математической теорией. Этап обоснования и выбора математического аппарата, обеспечивающего приемлемую формализацию неопределенности и адекватное решение задач, возникающих при управлении реальными инвестициями, является крайне важным. Необоснованный и как, следствие, не правильный выбор математического аппарата, в основном, приводит к неадекватности созданных математических моделей, получению неверных результатов в процессе их применения и, соответственно, возникает недоверие к полученным результатам, и игнорируются выводы на их основе.

Выше проведенный анализ методов количественной оценки эффективности инвестиционного проекта в условиях неопределенности позволяет сделать вывод, что существующие методы, либо элиминируют неопределенность из модели инвестиционного проекта, что неправомерно, так как неопределенность является неотъемлемой характеристикой любого прогноза, либо неспособны формально описать, и учесть все возможное разнообразие видов неопределенности. Подавляющее большинство методов формализует неопределенности лишь в качестве распределений вероятностей, построенных на основе субъективных экспертных оценках, что в очень большом количестве случаев является явно идеализированным. Таким образом, в данных методах неопределенность, независимо от ее природы, отождествляется со случайностью /25/, и поэтому они не позволяют учесть все возможное разнообразие видов неопределенностей воздействующих на инвестиционный проект. Как уже отмечалось, использование вероятностного подхода в инвестиционном анализе затрудняется причинами, связанными с отсутствием статистической информации или малым (недостаточным) размером выборки по некоторым из параметров инвестиционного проекта, что обусловлено уникальностью каждого инвестиционного проекта. Кроме того, точность оценки вероятностей (объективных и субъективных) зависит от множества факторов, начиная от качества статистической информации и заканчивая качеством экспертных оценок, поэтому и качество результирующей оценки эффективности и риска инвестиционного проекта слишком сильно зависит от них, что послужило росту недоверия к получаемым на их основе прогнозным оценкам и решениям. В связи с этим среди топ-менеджеров, банкиров, финансистов сложилось мнение, что подавляющее большинство прогнозных расчетов слишком идеализированы и далеки от практики. Многие предпочитают работать на основе опыта и интуиции. По мнению автора, это обусловлено, в том числе следующими основными причинами /14,15/:

– спецификой предметной области исследования, так как она находится на стыке современной прикладной математики, экономики и психологии;