Смекни!
smekni.com

Теоретические аспекты формирования оптимальных инвестиционных портфелей с использованием безрисковых кредитов и заемных средств (стр. 3 из 3)

M3

T F M1

P2

P3

Rf P1 D

E

0 σ (%)

Рисунок 3.1 – График портфелей, сочетающих рисковые и безрисковые активы

Если доля в рисковые активы составляет WR и безрисковый заем WF, то:

WR + WF = 1,2 + (-0,2) = 1.

Нетрудно доказать, что портфели, состоящие из безрисковых займов и рисковых активов, будут лежать на продолжении прямой линии RfT, как и портфели, которые включали безрисковое кредитование. При этом чем больше сумма привлеченных средств, тем выше и правее располагается точка портфеля. Точное расположение каждой точки зависит от величины займа. Какое бы количество средств мы не привлекали, если эти средства вместе с собственным капиталом помещаются в рисковый портфель, то он будет лежать на прямой RfT. Эта прямая будет представлять собой не что иное, как эффективное множество, т.е. портфели, предлагающие наилучшие возможности, будут располагаться именно на этой прямой, так как каждый из них лежит левее и выше остальных. Портфелей, лежащих влево от прямой, не существует, а любому портфелю, лежащему вправо от прямой, например портфелю М1, может быть противопоставлен портфель М3, который имеет такую же доходность, но меньшее стандартное отклонение, или портфель М2, обеспечивающий более высокую доходность при том же стандартном отклонении. Таким образом, если мы вводим условие, что инвестор имеет возможность предоставлять или получать безрисковые займы, то при этом условии ни один из портфелей, кроме портфеля Т, не является эффективным. Эффективным портфелем в эффективном множестве модели Марковица является единственный портфель Т, который находится в точке касания прямой и эффективной границы модели Марковица.

Любая другая структура портфеля с использованием займов и кредитов не будет являться эффективной, так как любой из этих портфелей будет лежать правее линии RfT, а это означает, что всегда найдется портфель который лежит на прямой.


Заключение

Как правило, на практике инвестиционный портфель складывается постепенно, в процессе покупки инвестором тех ценных бумаг, которые в наибольшей степени отвечают его целям. Однако существуют и математические модели формирования портфелей, наиболее известными из которых являются модель Марковица и производная от нее модель Шарпа. Эти модели имеют несколько ограничений, наиболее существенные из которых состоят в том, что:

Модели применимы только для крупных портфелей, т.е. таких, стоимость которых намного выше стоимости любой ценной бумаги, входящей в них;

Они созданы в основном применительно к акциям;

В них учитывается только вариационный риск, причем считается, что по каждой акции его можно априорно оценить.

Инвестору разрешается вкладывать средства в безрисковые активы. Под безрисковым активом понимается актив, по которому доход является строго определенным. По определению стандартное отклонение по безрисковому активу равно нулю.

Созданный портфель инвестиций затем постоянно изменяется вследствие его пополнения новыми ценными бумагами и продажи не нужных инвестору ценных бумаг.


Список использованной литературы

1. Бригхем Ю., Гапенски Л., Финансовый менеджмент: полный курс: 2т., М., 2000.

2. Гитман Л. Дж., Джонк М. Д., Основы инвестирования, М.: Дело, 1997.

3. Ковалев В. В., Уланов В. А., Курс финансовых инвестиций, М.: Финансы и статистика, 2002.

4. Тьюз Р., Бредли Э., Тьюз Т., Фондовый рынок, М.: ИНФРА-М., 1997.

5. Шарп У., Александер Г., Бэйли Дж., Инвестиции, М.: ИНФРА-М., 1997.