Смекни!
smekni.com

Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период (стр. 12 из 31)

Принципиально иной подход к решению проблемы предлагает С.Рамасвами[49], рассматривающий формирование структуры портфеля облигаций как задачу многоцелевой оптимизации значений функций полезности, определенных для каждого из рассматриваемых сценариев перемещения временной структуры процентных ставок и заданных в форме нечетких множеств. Этот подход подразумевает, что в ходе управления процентным риском инвестор определяет контрольные цифры, которым должна соответствовать доходность портфеля при реализации различных сценариев будущих изменений рыночной конъюнктуры. Для сценариев сдвига процентных ставок, в реализации которых инвестор испытывает наибольшую степень уверенности, устанавливаются наиболее высокие тактические цели. Маловероятным сценариям сдвига процентных ставок ставятся в соответствие относительно низкие целевые уровни доходности вложений. Корректировка тактических целей, соответствующих различным возможным состояниям рыночной конъюнктуры, позволяет регулировать структуру портфеля в зависимости от изменений прогнозов инвестора и его отношения к процентному риску.

Как считает С.Рамасвами, предположения инвесторов подвержены частым и существенным изменениям. Вместе с ними меняются и функции полезности, отражающие степень удовлетворенности доходностью сформированного портфеля при реализации каждого из сценариев перемещения временной структуры процентных ставок. Уровень полезности, обеспечиваемый портфелем, зависит от степени достижения тактических целей, поставленных при его формировании. Инвестор заинтересован в достижении «высокого» уровня доходности при реализации прогнозируемых сценариев изменения рыночной конъюнктуры и «приемлемого» уровня доходности при прямо противоположном развитии событий. Сложности при определении «высокого» и «приемлемого» уровня доходности вызывают необходимость обращения к аппарату теории нечетких множеств (fuzzysets).

Пусть инвестор осуществляет выбор из множества допустимых портфелей P на основе анализа S возможных сценариев перемещения временной структуры процентных ставок. Для каждого сценария с порядковым номером s степень достижения тактической цели в случае выбора каждого варианта формирования портфеля

задается при помощи нечеткого множества

, (1.3.28)

где

– функция принадлежности портфеля p к нечеткому множеству портфелей, обеспечивающих достижение данной тактической цели,
. Тогда степень достижения всех тактических целей инвестора выражается нечетким множеством

(1.3.29)

с функцией принадлежности

. (1.3.30)

Отсюда оптимальный вариант формирования портфеля

, позволяющий обеспечить максимальную степень достижения тактических целей инвестора, определяется условием

. (1.3.31)

Общую схему выбора структуры портфеля, обеспечивающего наилучшее достижение тактических целей, можно проиллюстрировать при помощи простого количественного примера. Пусть инвестор выбирает из пяти вариантов формирования портфеля на основе рассмотрения трех возможных сценариев перемещения временной структуры процентных ставок. Зададим условные значения функций принадлежности, отражающих степень достижения тактических целей, при помощи таблицы 1.3.1, в строках которой представлены различные сценарии перемещения временной структуры процентных ставок, а в столбцах – различные варианты формирования портфеля.

Таблица 1.3.1.

Функции принадлежности нечетких множеств

степени достижения тактических целей инвестора.

Сценарий Портф1 Портф2 Портф3 Портф4 Портф5
1.Рост ставок 0.8 0.5 0.1 0.7 0.3
2.Стабильность ставок 0.5 0.9 0.3 0.8 0.6
3.Падение ставок 0.2 0.6 0.7 0.6 0.9

В данном условном примере степень достижения тактических целей в случае выбора каждого из пяти различных портфелей рассчитывается по формулам

Оптимальным вариантом формирования портфеля является четвертая альтернатива, поскольку

.

Приведенный простой количественный пример не только дает наглядную иллюстрацию общей схемы решения задачи многоцелевой оптимизации структуры портфеля облигаций на базе теории нечетких множеств, но и позволяет выявить ключевые проблемы, которые необходимо решить для переложения теоретической концепции на практические рельсы. Во-первых, следует разработать методику построения сценариев перемещения временной структуры процентных ставок. Во-вторых, необходимо предложить схему задания нечеткого множества, отражающего степень достижения тактической цели при реализации каждого сценария изменения конъюнктуры. В-третьих, необходимо сформулировать математическую модель, позволяющую оптимизировать структуру портфеля на основе информации о сценариях сдвига процентных ставок, функциях полезности инвестора и параметрах облигаций, обращающихся на рынке.

Рамасвами предлагает рассматривать три группы сценариев перемещения временной структуры. Сценарии «бычьей» (bullish) группы строятся исходя из предположения о снижении уровня процентных ставок, сценарии «нейтральной» (neutral) группы – исходя из предположения о сохранении текущего уровня процентных ставок, сценарии «медвежьей» (bearish) группы – исходя из предположения об увеличении уровня процентных ставок. Экстремальные сценарии, определяющие предельные размеры сдвига временной структуры в обоих направлениях, формируются на основе минимальных и максимальных значений абсолютных приростов спот-ставок различной срочности за период времени, соответствующий сроку вложений инвестора. Для этого используется статистическая выборка временных структур за два года, предшествующих моменту формирования портфеля. Группа нейтральных сценариев включает сценарий сохранения текущего положения временной структуры процентных ставок, а также ее параллельного перемещения на несколько базисных пунктов вверх и вниз. Неэкстремальные «бычьи» и «медвежьи» сценарии располагаются в рамках интервала между сценарием сохранения положения временной структуры на прежнем уровне и двумя экстремальными сценариями. Различные «бычьи» и «медвежьи» сценарии характеризуются различным наклоном временной структуры процентных ставок.

По мнению диссертанта, методика построения сценариев перемещения временной структуры процентных ставок С.Рамасвами обладает рядом недостатков. Во-первых, она не исключает возможности формирования сценариев с отрицательными процентными ставками. Это может произойти, если текущий уровень ставок низок, а используемая статистическая выборка включает периоды бурного роста рынка. Во­–вторых, она не опирается на формальную статистическую модель процесса сдвига временной структуры, что понижает степень адекватности формируемых сценариев распределению будущих состояний рыночной конъюнктуры. В-третьих, она не позволяет учитывать купонные платежи, полученные в течение периода вложений.

В модели Рамасвами степень достижения тактической цели Gs (нечеткая полезность инвестора) описывается при помощи кусочно-заданной функции принадлежности

, (1.3.32)

где hs - доходность портфеля при реализации сценария перемещения временной структуры процентных ставок s,

- задача-минимум для доходности портфеля при реализации сценария s,
- задача-максимум для доходности портфеля при реализации сценария s.

На участке между

и
график функции нечеткой полезности является прямой линией с положительным тангенсом угла наклона. Это означает, что на данном промежутке инвестор нейтрален к процентному риску: снижение уровня доходности на малую величину Dhs ведет к такому же изменению уровня полезности, что и ее увеличение на ту же самую величину Dhs. В областях
и
уровень полезности вообще не зависит от доходности портфеля.