Поскольку
, (1.2.27) , (1.2.28) . (1.2.29)Подставляя (1.2.16), (1.2.17) и l=0 в (1.2.27), (1.2.28) и (1.2.29), имеем
, (1.2.30) , (1.2.31) . (1.2.32)Отсюда деление членов уравнения (1.2.26) на FV(0) дает
, (1.2.33)где
. (1.2.34)Регулируя структуру портфеля, инвестор не может изменить ожидаемую доходность вложений s(m) и ожидаемую стоимость портфеля через период mFV(0). Но, как показывает уравнение (1.2.33), полученное автором, инвестор может изменить зависимость доходности вложений от размера сдвига форвардных ставок l, или скорректировать профиль риска портфеля, управляя значениями показателей DFW и М2.
Рис.1.2.1. Профили риска иммунизированного и неиммунизированного портфелей.
Рис.1.2.1 демонстрирует различие профилей риска иммунизированного и неиммунизированного портфелей. Иммунизированный портфель полностью защищен от процентного риска: его доходность не может опуститься ниже уровня s(m). Любой допустимый сдвиг временной структуры форвардных ставок вызывает рост доходности вложений, причем этот эффект проявляется тем сильнее, чем больше значение параметра портфеля М2. Поэтому среди всех иммунизированных портфелей наиболее эффективным является портфель с наибольшим значением показателя М2.
Неиммунизированный портфель характеризуется процентным риском, однако величина возможных потерь по нему ограничена. Чтобы дать ее количественную оценку, представим выражение (1.2.33) в виде
. (1.2.35)Поэтому
. (1.2.36)Неравенство (1.2.36), выведенное диссертантом, свидетельствует, что размер максимальных потерь по неиммунизированному портфелю тем больше, чем больше расхождение между дюрацией портфеля и сроком вложений инвестора и чем меньше рассеяние денежных поступлений по портфелю вокруг даты окончания периода вложений.
Хотя неиммунизированный портфель не обеспечивает защиты от процентного риска, он может выглядеть привлекательным в глазах такого инвестора, чья оценка будущих изменений конъюнктуры существенно отлична от среднерыночной. Дело в том, что при l<0 неиммунизированные портфели с DFW>m обеспечивают большую доходность вложений по сравнению с иммунизированными, а при l>0 наиболее эффективными оказываются неиммунизированные портфели с DFW<m.
Несмотря на свое весомое теоретическое значение, модель иммунизации Фишера–Вейла крайне редко используется на практике и описывается в учебной литературе. Гораздо более широкое признание завоевала эвристическая модель иммунизации, совершенно неудовлетворительная с точки зрения своей теоретической обоснованности. Данная модель исходит из предположения, что правило согласования срока вложений с дюрацией Маколея формируемого портфеля обеспечивает иммунизацию доходности вложений в самых различных рыночных условиях, то есть при различных начальных состояниях временной структуры процентных ставок и при различных формах и траекториях ее последующих сдвигов.
Согласно концепции Маколея, расчет дюрации портфеля должен основываться на предварительном расчете его внутренней ставки доходности и последующем дисконтировании по этой ставке всех денежных требований, обеспечиваемых портфелем. Поскольку дюрации Маколея различных финансовых инструментов используют различные ставки дисконтирования, дюрация портфеля не может быть выражена аналитически через дюрации облигаций, входящих в его состав. Однако по общепринятому соглашению принимается иное определение дюрации портфеля, неадекватное концепции Маколея, но удобное с точки зрения простоты осуществляемых расчетов:
. (1.2.37)Тогда система уравнений, определяющих множество допустимых иммунизированных портфелей, приобретает следующий вид:
, (1.2.38) , (1.2.39) . (1.2.40)В случае, когда временная структура процентных ставок является горизонтальной, эвристическая модель иммунизации эквивалентна модели Фишера–Вейла, а значит, приведение дюрации Маколея портфеля в соответствие со сроком вложений инвестора обеспечивает корректное решение задачи иммунизации. Однако при нарушении условия горизонтальности временной структуры процентных ставок способность эвристической модели к устранению процентного риска перестает быть теоретически обоснованной.
По мнению Р.Даттатрейа и Ф.Фабоззи[32], использование дюрации Маколея приводит к неадекватным представлениям о закономерностях рынка облигаций. Результатом является открытие ошибочно специфицированных позиций по процентному риску и непредвиденное снижение доходности вложений в случае неблагоприятных перемещений временной структуры процентных ставок. Для обоснования своей позиции они приводят целый ряд примеров, доказывающих, что при определенной форме временной структуры процентных ставок эвристическая модель не обеспечивает решение задачи иммунизации.
Сторонники противоположной точки зрения обращаются к эмпирическим тестам, используемым для измерения изменчивости дохода при использовании эвристической модели иммунизации. Как показывают работы Платта и Тоевса[33], Галтекина и Рогальски[34], Бальбаса и Ибанеза[35], эвристическая модель иммунизации обеспечивала вполне надежную защиту инвестора от неблагоприятных сдвигов процентных ставок на рынке обязательств Казначейства США в различные периоды времени. Результаты этих тестов привели к признанию «парадокса дюрации» (durationparadox), согласно которому модель, недостаточно обоснованная теоретически, на практике обеспечивает вполне приемлемое уменьшение уровня процентного риска.
Мы полагаем, что секрет успеха эвристической модели заключается в том, что она позволяет решить главную задачу – сформировать портфель, для которого ценовой риск и риск реинвестирования являются сопоставимыми по величине и отрицательно коррелированными друг с другом. Поэтому возможности дальнейшего уменьшения уровня процентного риска за счет использования более точных моделей крайне ограничены. Однако их разработка позволяет дать более глубокое представление о механизме воздействия перемещений временной структуры процентных ставок на доходность портфелей облигаций, выделить факторы, определяющие уровень процентного риска, и оценить меру адекватности эвристической модели сложившимся рыночным условиям.
Эффективность метода устранения процентного риска, вытекающего из модели Фишера–Вейла, во многом определяется степенью соответствия между допущением о параллельном характере перемещений временной структуры и реальными сдвигами процентных ставок на рынке облигаций. Дж.Кокс, Дж.Ингерсолл и С.Росс привели весомый теоретический аргумент в пользу утверждения о некорректности ограничения класса допустимых перемещений временной структуры параллельными сдвигами[36]. Они показали, что рынок, на котором допустимыми являются только параллельные сдвиги временной структуры процентных ставок, не предоставляет инвесторам возможности систематического осуществления безрискового арбитража лишь при условии, что временная структура процентных ставок описывается квадратичной функцией вида
, (1.2.41)где r – мгновенная процентная ставка,
– волатильность фактора параллельного сдвига временной структуры процентных ставок l.Подавляющее большинство рынков облигаций характеризуются как невозможностью систематического осуществления арбитражных операций, так и невозможностью аппроксимации временной структуры процентных ставок функцией вида (1.2.41) с высокой степенью точности. Поэтому ограничение класса допустимых перемещений временной структуры параллельными сдвигами ведет к противоречию, которое можно разрешить, лишь допустив возможность непараллельных сдвигов. Следовательно, можно заключить, что на большинстве рынков облигаций использование метода иммунизации Фишера–Вейла не позволяет обеспечить полное устранение процентного риска.
Если модель параллельного сдвига является хорошим приближением при описании реального процесса изменений временной структуры процентных ставок, то размер возможных потерь минимален. Напротив, если наблюдаемые перемещения временной структуры существенно отличны от параллельных сдвигов, то размер возможных потерь недопустимо велик.