Смекни!
smekni.com

Финансовые операции в рыночной экономике (стр. 2 из 2)

Степень расхождения между r

и d
зависит от уровня процентных ставок, имеющих место в конкретный момент времени. Так, если r

= 7%, то d
= 6,54%, т.е. расхождение сравнительно невелико; если r
= 70%, то d
= 41,18%, т.е. ставки существенно различаются по величине.

Процесс, в котором заданы исходная сумма и ставка, в финансовых вычислениях называется наращением, искомая величина — наращенной суммой, а ставка — ставкой наращения. Процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и ставка, называется дисконтированием, искомая величина — приведенной суммой, а ставка — ставкой дисконтирования. В первом случае речь идет о движении денежного потока от настоящего к будущему, во втором — о движении от будущего к настоящему (рис. 1.1).



Экономический смысл финансовой операции, задаваемой формулой (1), состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку из формулы (1)

FV=РV (1+ r

) (4)

то FV >РV(так как 1

>1), т.е. время генерирует деньги.

Величина РУ, определяемая по формуле (1.7), показывает ка1 бы будущую стоимость “сегодняшней” величины РУ при задан ном уровне доходности г,.

Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов. Одна из интерпретаций коэффициента дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина РV показывает как бы текущую, “сегодняшнюю” стоимость будущей величины FV.

3. Понятие простых и сложных процентов

Ссудо-заемные операции, составляющие основу коммерческих вычислений, имеют давнюю историю. Именно в этих операциях и проявляется прежде всего необходимость учета временной ценности денег. Несмотря на то что в основе расчетов при анализе эффективности ссудо-заемных операций заложены простейшие, на первый взгляд, схемы начисления процентов, эти расчеты многообразны из-за вариабельности условий финансовых контрактов в отношении частоты и способов начисления, а также вариантов предоставления и погашения ссуд.

Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. При этом выделяется некоторый основной интервал времени, который называется базовым. Поскольку стандартным временным интервалом в финансовых операциях является один год, наиболее распространен вариант, когда этот год берется в качестве базового интервала и процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления, т.е. начисления процентов за фиксированные в договоре интервалы времени:

схема простых процентов,

схема сложных процентов.

Схема простых процентов предполагает неизменность величины, с которой происходит начисление. Пусть исходный инвестируемый капитал равен Р; требуемая доходность — r (в десятичных дробях). Считается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину Рr. Таким образом, размер инвестированного капитала F через п лет будет равен

F=Р(1+nr), (5)

т.е. проценты начисляются на одну и ту же величину капитала в течение всего срока.

Простым процентом называется сумма, которая начисляется при определении первоначальной (настоящей) стоимости вклада в конце одного периода платежа по условиям инвестирования средств (месяц, квартал и т.п.).

Выражение (5) называется формулой наращения по простым процентам, или формулой наращения простыми процентами, а множитель (1+пr)—множителем наращения, или коэффициентом наращения простых процентов. Очевидно, множитель наращения равен индексу роста капитала Р за п лет. Легко видеть, что приращение капитала

I=Рnr (6)

пропорционально сроку ссуды и ставке процента, т.е., в частности, можно сделать вывод, что доход инвестора растет линейно вместе с п. Величина дохода I, называется процентом, процентным платежом или суммой процента за обусловленный период инвестирования в целом.

На практике процентная ставка г может зависеть от величины исходного капитала Р: с увеличением капитала Р увеличивается и устанавливаемая ставка г. Например, если инвестируется капитал до 20 тыс. руб., то устанавливается одна ставка процента, если более 20 тыс. руб. — то другая (превышающая предыдущую).

Отметим, что если ставка г дана в процентах, то при использовании формулы (5) ставку нужно выразить в десятичных дробях.

С этих позиций наращение по простым процентам в случае, когда продолжительность финансовой операции п не равна целому числу лет (например, меньше года), определяется по формуле

F=Р (1+

r) (7)

где t — продолжительность финансовой операции в днях; '

Т — количество дней в году.

Сравнивая (5) и (7), можно сделать вывод, что формула (5) носит общий характер, поскольку в качестве п можно рассматривать любое положительное число, необязательно целое. Таким образом, (5) представляет собой зависимость наращенной суммы от времени, знание которой, в частности, позволяет на практике установить правила досрочного расторжения договора.

Сложным процентом называется сумма дохода, которая образуется в результате инвестирования при условии, что сумма начисленных простых процентов не выплачивается после каждого периода, а присоединяется к сумме основного вклада и в следующем платежном периоде сама приносит доход.

Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала Р (как для простых процентов), а с общей суммы, включающей также и ранее начисленные и невостребованные инвестором проценты. В этом случае происходит. капитализация процентов, т.е. присоединение начисленные процентов к их базе, и, следовательно, база, с которой начисляются проценты, все время возрастает. Таким образом, размер инвестированного капитала будет равен к концу n-го года:

F

= Р(1 + г)
. (8)

Равенство (8) называется формулой наращения по сложным процентам или формулой наращения сложными процентами; множитель (1 +г)

множителем наращения сложных процентов или мультиплицирующим множителем; 1коэффициентом наращения.

В отличие от схемы простых процентов в данном случае приращение капитала

I=F

- Р (9)

не пропорционально ни сроку ссуды, ни ставке процента (естественно, если п

1).

Т.о., в случае ежегодного начисления %-ов для лица, предоставляющего кредит:

- более выгодной яв-ся схема простого %-та, если срок менее года (%-ты начисляются однократно в конце периода);

- более выгодной яв-ся схема сложного %-та, если срок ссуды превышает год (%-ты начисляются ежегодно);

- обе схемы дают одинаковые результаты при продолжительности периода 1 год и однократном начислении %-ов.

Библиографический список

1. Ковалев В.В.Методы оценки инвестиционных проектов.-М: Финансы и статистика, 2009.

2. Ковалев В.В., Уланова В.А. Курс финансовых вычислений.-М: Финансы и статистика, 2007.

3. Ильенкова С.Д. и др. Инновационный менеджмент.-М: Банки и биржи, 2008.

4. Ендовицкий Д.А. Инвестиционный анализ в реальном секторе экономики.-М: Финансы и статистика, 2008.

5. Савицкая Г.В. Анализ хозяйственной деятельности предприятия.-Минск: Новое знание, 2008 и другие переиздания.

6. Харин А.А. Управление инновациями: в 3-х кн.-М: Высш шк., 2009.

7.Гиляровская Л.Т. Экономический анализ.-М: ЮНИТИ, 2007.

8. Крылов Э.И. Анализ эффективности инвестиционной и иннновационной деятельности предприятия.-М:Финансы и статистика, 2008.

9 Станиславчик Е.Н. Инвестиционный анализ профессиональных бухгалтеров (курс лекций), 2008.

10 Герасименко Г.П., Маркарьян С.Э. и др. Управленческий, финансовый и инвестиционный анализ: Практикум, 2007.