Смекни!
smekni.com

Разработка анализатора газов на базе газового сенсора RS 286-620 (стр. 7 из 10)

Для работы с измерительной частью используется порт 1 микроконтроллера. Весь необходимый протокол обмена реализован программно.

При работе в автономном режиме для отображения результатов измерений используется жидкокристаллический дисплей HD44780 со встроенными схемами управления. Благодаря наличию в дисплее схем формирования символов и управления стало возможным включить его непосредственно в шину данных- адреса.

Блок питания.

В качестве блока питания прибора используется внешний источник питания напряжением 9В. Ток, обеспечиваемый источником составляет 0,7 А. Напряжение питания, поступающее в прибор фильтруется цепочкой С5 С105 L4 С107 С106 , стабилизируется интегральным стабилизатором D50 . Напряжение со стабилизатора поступает в цепи питания электронных компонент прибора.

Отсутствие в приборе автономного блока питания ( аккумуляторов ) объясняется большим энергопотреблением прибора, которое, в свою очередь, обусловлено большим током в цепи нагревателя газового датчика.

Устройство отображения информации.

Для отображения результатов измерений используется матричный жидкокристаллический модуль семейства LM44780. Устройство отображения информации позволяет отображать цифровую и текстовую информацию, а так же некоторые служебные символы. В опытном экземпляре прибора установлен модуль, позволяющий отображать 2 строки информации по 20 символов каждая. В других экземплярах прибора допускается использование других модулей семейства LM44780 без каких-либо изменений в схеме и алгоритме работы прибора. Жидкокристаллический модуль отображения информации включает в свой состав схемы управления и знакогенератора, что избавляет от необходимости тратить ресурсы микроконтроллера на реализацию пользовательского интерфейса.

Модуль состоит из входного регистра, знакогенератора, четырех сдвиговых регистров для обеспечения динамической индикации, и жидкокристаллического дисплея. Обмен информацией между модулем и внешними устройствами происходит посредством входного регистра. Работа модуля возможна как в режиме 8 битового интерфейса, так и в режиме 4-х битового интерфейса. В приборе реализован первый вариант работы этого устройства.

Модуль имеет следующие входные сигналы

· E-тактовые импульсы. При переходе этого сигнала из высокого логического уровня в низкий происходит исполнение поступившей команды или захват данных.

· R/W-запись/чтение. Используется для указания направления обмена данными с модулем. Низкий логический уровень соответствует записи данных в модуль. Режим чтения используется для определения текущего состояния модуля.

· RS-команда/данные. Состояние этого сигнала определяет характер поступающей в модуль информации. Высокий уровень соответствует команде, низкий- данным (код отображаемого символа).

· DB0…DB7-шина данных. Используется для обмена данными с модулем.

Для записи информации в ЖК-модуль необходимо выставить сигнал RS в состояние, соответствующее характеру обмена; сигнал R/W установить в низкий логический уровень, выставить на шине данных передаваемую информацию, изменить уровень сигнала Е с низкого на высокий и обратно.

После проведения записи информации модуль временно блокируется для ее обработки и не отвечает на внешние запросы. Характерным признаком такого состояния является высокий логический уровень во всех разрядах шины данных. После завершения внутренней операции шина данных будет выставлена в низкий логический уровень.

Работа с модулем отображения информацией должна начинаться со специальной инициализирующей последовательности данных. Далее следуют команды очистки индикатора, управления курсором, определения произвольных символов (если необходимо) и коды выводимых символов. Подробно протоколы информационного обмена с ЖК модулями семейства LM44780 описаны в [6] и [10]

Результаты испытаний прибора (термограммы некоторых веществ и смесей)

Настройка и калибровка анализатора.

Процесс настройки прибора сводится к отладке процессорной части и программы работы, а так же к проверке работы измерительного блока. Подготовка измерительной части к работе заключается в проверке напряжений на нагревателе чувствительно элемента, и проверке длительности интервалов прогрева и охлаждения сенсора. Кроме того, необходимо проведение проверки длительности и равномерности интервалов между измерениями при снятии термограммы.

Процесс калибровки проводиться путем снятия термограмм эталонных смесей на сенсоре, который затем будет установлен в приборе. Эталонные термограммы снимаются сенсором, подключенным к ПЭВМ IBM PC и записываются в файл. В дальнейшем такие файлы можно использовать либо для проверки взаимозаменяемости сенсоров, либо для их метрологической проверки. Содержимое эталонных файлов зашивается в ПЗУ данных прибора.

При изменении типа сенсора необходимо определить оптимальные для данного датчика длительностей прогрева и охлаждения датчика. В качестве значения времени прогрева выбирается время полного прогрева датчика от температуры +10оС до рабочей температуры. В качестве значения времени охлаждения выбирается время остывания датчика от рабочей температуры до +10оС. В процессе определения длительности интервалов прогрева и охлаждения датчика на нагреватель датчика подается рабочее напряжение и измеряется ток через нагреватель. После подачи на нагреватель напряжения, его температура начинает возрастать. Поскольку сопротивление нагревателя растет с ростом температуры, то ток через нагреватель уменьшается до достижения некоторого стационарного значения. Время с момента подачи напряжения на нагреватель до достижения током стационарного значения считается временем прогрева датчика.


Для настройки датчика используются тарированные газовые растворы паров различных веществ в воздухе. Типичные концентрации паров должны составлять величины 10 - 1000 ppm.

Первоначально испытания датчика проводились на 20 эталонных образцах.

1. Воздух
2. Пары воды
3. хлороформ
4. четыреххлористый углерод
5. дихлорэтан
6. гексан
7. Смесь горючих газов (СГГ)
8. Бензол
9. Толуол
10. фенол
11. формальдегид
12. ацетон
13. спирт этиловый
14. аммиак
15. угарный газ
16. углекислый газ
17. уксусная к-та
18. метан
19. сероводород
20. озон

Для указанных выше веществ были проведены измерения и сняты зависимости сопротивления от температуры (эталонные термограммы). По полученным данным была построена таблица корреляций эталонов ( матрица М в выражении (20а) ) . Графики эталонных термограмм и таблица корреляций приведены в приложении 11. ( Серым цветом в таблице корреляций выделены вещества, термограммы которых были заложены в ПЗУ прибора).

Из таблицы корреляций видно, что значение коэффициента корреляции для нескольких пар веществ близко к единице. При определении состава газовой смеси вероятность того, что вместо одного вещества будет ошибочно обнаружено другое определяется коэффициентом корреляции между термограммами этих веществ.

При выборе эталонных термограмм для прошивки в ПЗУ прибора помимо коэффициента корреляции учитывалась воспроизводимость термограмм для каждого из веществ.

В качестве веществ, использующихся при настройке датчика следует выбирать следующие:

Чистый, сухой воздух.

Пары воды.

Угарный газ.

Сероводород.

Спирт этиловый.

Для проверки работоспособности прибора используются тарированные газовые растворы паров комбинаций (двойных и тройных) тех же веществ в воздухе.


Ниже приведены наиболее удачные результаты, полученные при калибровке прибора.

Смесь Показания прибора
Пары воды Вода 7000 ppm
Сероводород 500 ppm Сероводород 492 ppm Хлор органика 3 ppm
Водный раствор спирта 50% Вода 1200 ppm Спирт 1600 ppm
Сероводород + Пары воды Вода 309 ppm Сероводород 270 ppm
Спирт + Аммиак Спирт 15 ppm Аммиак 1200 ppm

Результаты, полученные при определении состава газовой смеси с использованием всех 19 эталонов приведены в приложении 6.

Алгоритм работы прибора

Алгоритм работы прибора, реализованный в помещенной в ПЗУ прибора программе работы прибора, состоит из двух основных блоков – блока снятия результатов измерений и блока обработки результатов и определения концентраций примесей.

При разработке программы работы прибора большое внимание уделялось сохранению одинаковых условий снятия термограмм на протяжении всего времени работы прибора. Для обеспечения воспроизводимости термограмм необходимо сохранение постоянной частоты снятия результатов измерений с АЦП и циклов прогрева –охлаждения датчика. В алгоритме работы прибора включение-выключение нагревателя датчика и снятие показаний АЦП происходят по прерыванию от внутреннего таймера микропроцессора. Через строго определенные промежутки времени происходит включение или выключение напряжения на нагревателе и сохранение данных с АЦП во внешней переменной. После того, как данные в этой переменной были обновлены выставляется флаг «Новое измерение» .

Работа прибора начинается с предварительного прогревочного цикла датчика. Во время снятия термограмм результаты измерений, полученные с АЦП, записываются в элементы массива в ОЗУ прибора. После записи очередного результата значение адреса в массиве увеличивается и сбрасывается флаг «Новое измерение».

После того, как запись результатов в массив завершена управление передается блоку обработки результатов. Первоначально снятые данные, полученные с АЦП, пересчитываются в проводимость сенсора. Затем проводимость сенсора и эталонные термограммы пересчитываются в матрицу М и столбец свободных членов В.