Подобная схема расчетов основана на конструировании системы уравнений (4), (6) и (7) и ее решении относительно параметров a , b и g , что позволяет охарактеризовать эту схему как аналитическую или алгебраическую. Решение системы (4), (6), (7) дает следующие формулы для оцениваемых параметров:
, (8) , (9) . (10)Идентификация параметров функций (4) и (5) позволяет элементарно определить точки Лаффера. При этом точка Лаффера первого рода q*, когда dX/dq =0, определяется по формуле
, (11)а точка Лаффера второго рода q**, когда d2T/dq 2=0, находится в результате решения следующего квадратного уравнения
(12)и в итоге вычисляется по формуле
. (13)Дополнительное исследование свойств функций (4) и (5) позволит определить, являются ли найденные стационарные точки точками Лаффера. Если стационарные точки окажутся точками локального минимума или их значения выйдут за область допустимых значений, то точки Лаффера отсутствуют.
Альтернативой рассмотренному трехпараметрическому методу может служить подход, базирующийся на использовании в качестве производственной функции усеченного полинома третьей степени:[15]
.При этом число параметров не меняется, оставаясь равным трем. В этом случае процедура отыскания лафферовых точек корректируется с учетом исходной кубической зависимости, а стационарные точки для фискальной кривой будут отыскиваться в результате решения кубического уравнения. Понятно, что такой алгоритм может генерировать две точки Лаффера второго рода. На наш взгляд, в силу большей однозначности и наглядности на практике следует использовать первый, базовый вариант трехпараметрического метода.
Следует отметить, что аналитический метод оценки эффективности фискальной политики позволяет использовать функциональные зависимости с числом параметров, не превышающим трех. Большее число параметров требует добавления к базовой системе (4), (6), (7) дополнительных уравнений, что невозможно из-за узкой постановки исходной задачи.
2. Двухпараметрический метод. В основе данного метода лежит аппроксимация процесса экономического роста усеченной квадратичной функцией, включающей только два параметра:
. (14)Тогда сумма фискальных поступлений равна
. (15)Дополнительное ограничение, накладываемое на функциональные свойства производственной системы, задается уравнением, аналогичным (6):
. (16)Построенная система уравнений (14), (16) достаточна для отыскания параметров b и g . Как и в случае использования трехпараметрического метода, уравнение (14) воспроизводит “точечные” свойства производственной системы, а уравнение (16) – “интервальные”. При этом вспомогательное уравнение, задающее динамические свойства фискальной системы, отсутствует; по умолчании считается, что получаемая сумма налогов полностью детерминируется активностью производственной системы и уровнем фискального давления.
Формулы для оценки параметров на основе решения (14), (16) имеют вид
, (17) . (18)Точки Лаффера первого и второго рода определяются из (14) и (15) по соответствующим формулам:
, (19) . (20)Анализ условий второго порядка показывает следующее: для того, чтобы стационарные точки (19) и (20) были действительно точками Лаффера, необходимо и достаточно выполнение двух неравенств: b >0 и g <0.
В рамках класса алгебраических методов возможны два подхода к расчету эффективности фискальной системы с помощью точек Лаффера. Проанализируем особенности каждого из них с тем, чтобы выбрать наиболее приемлемый для дальнейших прикладных расчетов.
Как указывалось, порядок полиномиальной регрессии не должен быть слишком высоким, так как по мере его роста утрачивается смысл эконометрической процедуры сглаживания. Дело в том, что в предельном случае, когда порядок полинома будет равен t -1, где t - число отчетных ретроспективных точек, количество параметров, подлежащих оценке, также будет равно t.[16] В такой ситуации пользоваться статистическими методами построения регрессии бессмысленно, ибо все параметры могут быть однозначно определены алгебраически с помощью процедуры интерполяции исходного динамического ряда X полиномом. Таким образом, в предельном случае статистические методы переходят в алгебраические, что иллюстрирует их изначальное методическое единство. Однако процедуры интерполяции, вообще говоря, следует избегать по целому ряду причин.[17]
Во-первых, полиномы высокой степени требуют высокой точности расчетов, так как в противном случае накапливаются вычислительные погрешности.
Во-вторых, полиномы выше четвертой степени порождают серьезные алгебраические проблемы при дальнейшем определении стационарных точек. В этом случае задача сводится к решению алгебраического уравнения высокой степени, что само по себе представляет сложную задачу. Однако даже после ее решения в дальнейшем предстоит классифицировать все стационарные точки на локальные минимумы и максимумы, затем среди точек локального максимума выбрать те, которые являются точками Лаффера. В конечном счете, помимо чисто вычислительных проблем придется решать еще проблему интерпретации полученных результатов, что также весьма непросто.
В-третьих, сама процедура интерполирования априори предполагает, что имеется жесткая функциональная связь между объемом выпуска и уровнем налогового бремени. Хотя теоретически связь между этими переменными должна существовать, все же желательно, чтобы ее наличие было строго доказано. Кроме того, полиномиальная интерполяция, будучи технически безупречной, с содержательной точки зрения все же представляется несколько искусственной.
Между тем и построение регрессионной зависимости таит в себе целый ряд минусов.
Во-первых, в России не накоплен информационный массив для формирования динамических рядов, позволяющих строить эффективные регрессионные модели.
Во-вторых, в российской экономике переходного периода отсутствовала какая-либо устойчивость в развитии исследуемого процесса. Так, в одни годы увеличение налогового бремени сопровождалось сокращением ВВП, а в другие – увеличением. Фактически это означает, что некая гипотетическая функциональная связь между ВВП и налоговым бременем постоянно “ломалась” и для каждого короткого периода времени действовала своя производственная функция; попытка отыскать универсальную зависимость для всего периода исследования скорее всего обречена на неудачу. Именно этот факт и предопределяет необходимость использования двух- и трехпараметрического аналитических методов оценки точек Лаффера как наиболее простых и максимально адекватных нынешним экономическим условиям.
Использование параметрических методов базируется на предпосылке о существовании функциональной связи между объемом производства и уровнем налогового бремени. При этом вид этой связи является общим для всех анализируемых годов, меняются в ней лишь параметры. Последние оцениваются “скользящим” способом, т. е. для каждой пары лет отдельно. При этом первый, базовый год фигурирует в качестве основного, а второй – вспомогательного при определении параметров производственной функции первого года. Нам представляется, что такой подход наиболее перспективен и останется таковым в течение, по крайней мере, 5-6 лет, пока не будут накоплены данные о стабилизировавшемся процессе экономического роста.
При сопоставлении двух предложенных алгебраических методов можно сказать следующее. Достоинство трехпараметрического метода, прежде всего, – учет функциональных свойств как производственной (4), так и фискальной (5) функций. Следовательно, оцениваемые параметры одновременно “стягиваются” свойствами производственной и фискальной систем, которые на практике могут сильно различаться; в двухпараметрическом методе мы ограничиваемся свойствами только производственной кривой (14), что означает безусловное упрощение моделируемого процесса и ведет к огрублению получаемых оценок. Кроме того, сам вид исходной квадратичной производственной функции (4) является более общим по сравнению с формулой (14) и тем самым генерирует более богатую аналитическую схему. В этом смысле трехпараметрический метод более предпочтителен. Вместе с тем вычислительная простота, наглядность и элегантность конечных результатов двухпараметрической схемы расчета предопределяют выбор ее в качестве рабочей методики. Нам представляется, что для уяснения макроэкономической ситуации следует пользоваться предельно простыми алгоритмами, не ведущими к двусмысленным интерпретациям.