Смекни!
smekni.com

Биокосная система гидросферы (стр. 4 из 5)

По интенсивности вовлечения в водную миграцию, характеризуемой Къ, элементы группируются следующим образом (в по-следовальности уменьшения числового значения КВв каждом ряду):

n×102: С1

n×10: S, I, Br, Ag, Sb, Hg, В, Cd

n: As, Mo, Ca, Zn, Sr, Cu, Mg, Na, Sn

n×10-1: U, Ni, Pb, F, Co, Ba, Cr, P, Mn, Si, V, Zr

n×10-20: Ga, Th, Al, Ti, Sc

Миграция элементов в составе речных взвесей. Рассмотренные факты и выводы относятся к элементам, находящимся в растворенном состоянии. Иное соотношение химических элементов и их масс наблюдается в веществе, мигрирующем в речных водах во взвесях. Это объясняется тем, что масса взвесей в годовом стоке рек более чем вчетверо превышает массу растворимых соединений и что состав речных взвесей имеет специфические особенности.

Речные взвеси состоят преимущественно из высокодисперсных глинистых частиц, мелких обломков кварца и сгустков гидрокси-Дов железа. Концентрация большей части элементов (кремния, алюминия, железа и др.) во взвесях значительно выше, чем в сумме растворимых соединений в речной воде. В то же время для кальция характерно обратное соотношение.

А.П. Лисицин и его сотрудники показали, что основная масса Рассеянных элементов, переносимых речными водами, связана со взвесями. Как следует из данных, приведенных в табл. 4.4, во взвешенном веществе рек переносится: свыше 98 % массы элементов с очень низкими коэффициентами водной миграции КВ < 0,5) — алюминия, титана, галлия, свинца, тория, скандия; от 90 до 98 % массы элементов со значениями Къот 0,05 до 0,9 — кремния, железа, марганца, фосфора, бария, циркония, рубидия, хрома, кобальта, никеля. Даже некоторые элементы, обладающие высокой интенсивностью водной миграции и значениями Квот 1 до 10, мигрируют преимущественно не в растворенном состоянии. От 65 до 85 % массы магния, цинка, меди, молибдена, ежегодно выносимой реками с территории Мировой суши, переносится в формах, фиксированных на взвешенных частицах. Лишь для ограниченного числа элементов — азота, хлора, серы, кальция, натрия, брома — характерно преобладание масс водорастворимых соединений в речном стоке.

Таблица 4.4

Вынос химических элементов, содержащихся во взвешенном веществе рек

Химический элемент Концентрация, мкг/л (В. В. Гордеев, 1983) Годовой вынос взвешенных форм элементов, 103 т/год Сумма растворенных и взвешенных форм, 103 т/год Количество взвешенных форм от суммарного выноса, %
Si 117000 4797000 5030700 95,4
А1 38200 1 566 200 1 569 275 99,8
Fe 23500 963 000 990970 97,2
Са 11500 471 500 1 004 500 46,9
К 6900 282 900 344 400 82,1
Mg 5750 235750 371 050 63,5
Na 4600 188600 373 100 50,4
Ti 1840 75440 75604 92,8
Р 510 20910 21730 96,2
Mn 500 20500 20910 98,0
Ва 280 11480 12505 91,8
Zn 143 5863 6683 87,7
Zr 92 3772 3875 97,3
Sr 69 2829 6109 46,3
Pb 69 2829 2870 98,6
Rb 55 2255 2329 96,8
Cr 60 2460 2501 98,4
Ni 38,6 1583 1705 92,8
Cu 37 1517 1825 83,1
В 32 1312 2050 64,0
Li 14 574 664 86,4
Sc 9,2 377 380 99,2
Co 8,3 340 350 97,1
Ga 8,3 340 344 98,8
Th 4,6 187 189 99,6
As 2,3 94,3 176 53,4
Mo 1,4 57,4 94,0 60,6
Sb 0,9 36,9 74,0 50,0
Ag 0,6 24,6 32,8 75,0
Cd 0,32 13,1 21,9 59,8
U 0,14 57,4 17,7 32,2

Важно отметить, что относительное содержание химических элементов в речных взвесях не соответствует кларкам земной коры. Следовательно, взвешенное вещество рек — не механически измельченный материал земной коры, а результат его определенного преобразования. Интенсивность такого преобразования может быть оценена значением коэффициента Кр, равным отношению средней концентрации элемента в речной взвеси к его кларку гранитного слоя земной коры континентов.

По значениям коэффициента Крможно выделить три группы элементов. Элементы первой группы характеризуются значениями Крменьше единицы, т.е. уменьшением относительного содержания во взвесях по сравнению с кларком гранитного слоя земной коры. В эту группу входят кальций и натрий, а также строн-Чии, барий, литий. Относительное содержание магния во взвесях по отношению к земной коре существенно не меняется р=1).

Вторую группу образуют элементы, у которых Крравны или немногим более единицы. Таковы титан, цирконий, галлий, а также железо и марганец. К третьей группе относятся элементы, концентрация которых возрастает во взвесях, а значение Крот 2 до 9. Эту группу образуют тяжелые металлы: свинец, цинк, медь, никель, кобальт, хром, ванадий, кадмий.

Ясно выраженная аккумуляция тяжелых металлов в речных взвесях дает основание предполагать, что это явление связано с биогеохимическими процессами. В водную миграцию на суше вовлекаются химические элементы, не захваченные в биологический круговорот. Возможно, что вынос значительных масс тяжелых металлов, прочно фиксированных на дисперсных продуктах выветривания и почвообразования, является одним из механизмов предохранения живого вещества суши от избыточных масс этих элементов.

Природные геохимические аномалии в поверхностных водах суши. На участках высоких концентраций рассеянных химических элементов поверхностные воды обогащаются элементами, присутствующими в избытке. Так образуются природные гидрогеохимические аномалии. Особенно заметное обогащение происходит в тех случаях, когда поверхностные и грунтовые воды контактируют с сульфидными рудами. Окисление сульфидов железа сопровождается гидролизом сульфатов, выпадением гидроксидов железа и образованием серной кислоты, которая усиливает растворяющую способность воды. Возникающие при окислении сульфидов цинка, меди, никеля сульфаты хорошо растворимы и активно вовлекаются в водную миграцию.

В результате реакций с другими растворенными соединениями и взаимодействия с поверхностью взвешенных частиц значительная часть мигрирующих металлов относительно быстро выводится из раствора и их концентрация достигает уровня местного геохимического фона По этой причине протяженность природных гидрогеохимических аномалий в речных водах небольшая и редко превышает несколько сотен метров.

На значительно большее расстояние — до нескольких километров — распространяются аномально высокие концентрации в донных осадках, представляющих собой осажденные частицы водных взвесей. Определение металлов в воде небольших водотоков и особенно в их донных отложениях успешно использовалось при рекогносцировочных геохимических поисках месторождений руд во многих районах нашей страны, а также в Канаде, США, Англии, Замбии, Уганде, на Филиппинах и в других странах.

Аккумуляция химических элементов в воде оказывает влияние на водные биоценозы. Широко распространены различные проявления эвтрофизации небольших плохо проточных водоемов. Концентрация металлов в плавающих и погруженных растениях в водоемах конечного стока, как правило, выше среднепланетарных значений. Высокие природные концентрации некоторых элементов в поверхностных и грунтовых водах отдельных районов вызывают повышенное содержание этих элементов в местной растительности. Если растительность используется в качестве корма для сельскохозяйственных животных, то это вызывает заболевание скота. Подобные случаи изучены в США Р. Ибенсом и X. Шаклет-том (1973), в Ирландии и Англии Дж.Уэббом, И.Торнтоном и К.Флетчером (1966), в нашей стране В.В.Ковальским (1974).

В заключение необходимо подчеркнуть, что природные геохимические аномалии в поверхностных водах Мировой суши очень локальны и не оказывают заметного влияния на баланс масс химических элементов в глобальных биогеохимических циклах.

3. Трансформация геохимического состава природных растворов на контакте речных и океанических вод

С суммарным речным стоком в океан поступают огромные массы химических элементов. Ежегодно с речным стоком выносится в составе взвесей и растворенных форм соответственно (млн. т): железа — 963 и 27; марганца — 20,5 и 0,41; цинка — 5,86 и 0,82; меди— 1,51 и 0,28; свинца — 2,8 и 0,04; никеля — 1,58 и 0,12; кобальта — 0,34 и 0,01. Согласно данным А. П. Лисицина и др. (1983), из этого количества более 92 % выпадает в краевых морях и особенно в устьях рек, лишь 7,8 % достигает глубоководных областей океана.