По интенсивности вовлечения в водную миграцию, характеризуемой Къ, элементы группируются следующим образом (в по-следовальности уменьшения числового значения КВв каждом ряду):
n×102: С1
n×10: S, I, Br, Ag, Sb, Hg, В, Cd
n: As, Mo, Ca, Zn, Sr, Cu, Mg, Na, Sn
n×10-1: U, Ni, Pb, F, Co, Ba, Cr, P, Mn, Si, V, Zr
n×10-20: Ga, Th, Al, Ti, Sc
Миграция элементов в составе речных взвесей. Рассмотренные факты и выводы относятся к элементам, находящимся в растворенном состоянии. Иное соотношение химических элементов и их масс наблюдается в веществе, мигрирующем в речных водах во взвесях. Это объясняется тем, что масса взвесей в годовом стоке рек более чем вчетверо превышает массу растворимых соединений и что состав речных взвесей имеет специфические особенности.
Речные взвеси состоят преимущественно из высокодисперсных глинистых частиц, мелких обломков кварца и сгустков гидрокси-Дов железа. Концентрация большей части элементов (кремния, алюминия, железа и др.) во взвесях значительно выше, чем в сумме растворимых соединений в речной воде. В то же время для кальция характерно обратное соотношение.
А.П. Лисицин и его сотрудники показали, что основная масса Рассеянных элементов, переносимых речными водами, связана со взвесями. Как следует из данных, приведенных в табл. 4.4, во взвешенном веществе рек переносится: свыше 98 % массы элементов с очень низкими коэффициентами водной миграции КВ < 0,5) — алюминия, титана, галлия, свинца, тория, скандия; от 90 до 98 % массы элементов со значениями Къот 0,05 до 0,9 — кремния, железа, марганца, фосфора, бария, циркония, рубидия, хрома, кобальта, никеля. Даже некоторые элементы, обладающие высокой интенсивностью водной миграции и значениями Квот 1 до 10, мигрируют преимущественно не в растворенном состоянии. От 65 до 85 % массы магния, цинка, меди, молибдена, ежегодно выносимой реками с территории Мировой суши, переносится в формах, фиксированных на взвешенных частицах. Лишь для ограниченного числа элементов — азота, хлора, серы, кальция, натрия, брома — характерно преобладание масс водорастворимых соединений в речном стоке.
Таблица 4.4
Вынос химических элементов, содержащихся во взвешенном веществе рек
Химический элемент | Концентрация, мкг/л (В. В. Гордеев, 1983) | Годовой вынос взвешенных форм элементов, 103 т/год | Сумма растворенных и взвешенных форм, 103 т/год | Количество взвешенных форм от суммарного выноса, % | ||
Si | 117000 | 4797000 | 5030700 | 95,4 | ||
А1 | 38200 | 1 566 200 | 1 569 275 | 99,8 | ||
Fe | 23500 | 963 000 | 990970 | 97,2 | ||
Са | 11500 | 471 500 | 1 004 500 | 46,9 | ||
К | 6900 | 282 900 | 344 400 | 82,1 | ||
Mg | 5750 | 235750 | 371 050 | 63,5 | ||
Na | 4600 | 188600 | 373 100 | 50,4 | ||
Ti | 1840 | 75440 | 75604 | 92,8 | ||
Р | 510 | 20910 | 21730 | 96,2 | ||
Mn | 500 | 20500 | 20910 | 98,0 | ||
Ва | 280 | 11480 | 12505 | 91,8 | ||
Zn | 143 | 5863 | 6683 | 87,7 | ||
Zr | 92 | 3772 | 3875 | 97,3 | ||
Sr | 69 | 2829 | 6109 | 46,3 | ||
Pb | 69 | 2829 | 2870 | 98,6 | ||
Rb | 55 | 2255 | 2329 | 96,8 | ||
Cr | 60 | 2460 | 2501 | 98,4 | ||
Ni | 38,6 | 1583 | 1705 | 92,8 | ||
Cu | 37 | 1517 | 1825 | 83,1 | ||
В | 32 | 1312 | 2050 | 64,0 | ||
Li | 14 | 574 | 664 | 86,4 | ||
Sc | 9,2 | 377 | 380 | 99,2 | ||
Co | 8,3 | 340 | 350 | 97,1 | ||
Ga | 8,3 | 340 | 344 | 98,8 | ||
Th | 4,6 | 187 | 189 | 99,6 | ||
As | 2,3 | 94,3 | 176 | 53,4 | ||
Mo | 1,4 | 57,4 | 94,0 | 60,6 | ||
Sb | 0,9 | 36,9 | 74,0 | 50,0 | ||
Ag | 0,6 | 24,6 | 32,8 | 75,0 | ||
Cd | 0,32 | 13,1 | 21,9 | 59,8 | ||
U | 0,14 | 57,4 | 17,7 | 32,2 |
Важно отметить, что относительное содержание химических элементов в речных взвесях не соответствует кларкам земной коры. Следовательно, взвешенное вещество рек — не механически измельченный материал земной коры, а результат его определенного преобразования. Интенсивность такого преобразования может быть оценена значением коэффициента Кр, равным отношению средней концентрации элемента в речной взвеси к его кларку гранитного слоя земной коры континентов.
По значениям коэффициента Крможно выделить три группы элементов. Элементы первой группы характеризуются значениями Крменьше единицы, т.е. уменьшением относительного содержания во взвесях по сравнению с кларком гранитного слоя земной коры. В эту группу входят кальций и натрий, а также строн-Чии, барий, литий. Относительное содержание магния во взвесях по отношению к земной коре существенно не меняется (Кр=1).
Вторую группу образуют элементы, у которых Крравны или немногим более единицы. Таковы титан, цирконий, галлий, а также железо и марганец. К третьей группе относятся элементы, концентрация которых возрастает во взвесях, а значение Кр — от 2 до 9. Эту группу образуют тяжелые металлы: свинец, цинк, медь, никель, кобальт, хром, ванадий, кадмий.
Ясно выраженная аккумуляция тяжелых металлов в речных взвесях дает основание предполагать, что это явление связано с биогеохимическими процессами. В водную миграцию на суше вовлекаются химические элементы, не захваченные в биологический круговорот. Возможно, что вынос значительных масс тяжелых металлов, прочно фиксированных на дисперсных продуктах выветривания и почвообразования, является одним из механизмов предохранения живого вещества суши от избыточных масс этих элементов.
Природные геохимические аномалии в поверхностных водах суши. На участках высоких концентраций рассеянных химических элементов поверхностные воды обогащаются элементами, присутствующими в избытке. Так образуются природные гидрогеохимические аномалии. Особенно заметное обогащение происходит в тех случаях, когда поверхностные и грунтовые воды контактируют с сульфидными рудами. Окисление сульфидов железа сопровождается гидролизом сульфатов, выпадением гидроксидов железа и образованием серной кислоты, которая усиливает растворяющую способность воды. Возникающие при окислении сульфидов цинка, меди, никеля сульфаты хорошо растворимы и активно вовлекаются в водную миграцию.
В результате реакций с другими растворенными соединениями и взаимодействия с поверхностью взвешенных частиц значительная часть мигрирующих металлов относительно быстро выводится из раствора и их концентрация достигает уровня местного геохимического фона По этой причине протяженность природных гидрогеохимических аномалий в речных водах небольшая и редко превышает несколько сотен метров.
На значительно большее расстояние — до нескольких километров — распространяются аномально высокие концентрации в донных осадках, представляющих собой осажденные частицы водных взвесей. Определение металлов в воде небольших водотоков и особенно в их донных отложениях успешно использовалось при рекогносцировочных геохимических поисках месторождений руд во многих районах нашей страны, а также в Канаде, США, Англии, Замбии, Уганде, на Филиппинах и в других странах.
Аккумуляция химических элементов в воде оказывает влияние на водные биоценозы. Широко распространены различные проявления эвтрофизации небольших плохо проточных водоемов. Концентрация металлов в плавающих и погруженных растениях в водоемах конечного стока, как правило, выше среднепланетарных значений. Высокие природные концентрации некоторых элементов в поверхностных и грунтовых водах отдельных районов вызывают повышенное содержание этих элементов в местной растительности. Если растительность используется в качестве корма для сельскохозяйственных животных, то это вызывает заболевание скота. Подобные случаи изучены в США Р. Ибенсом и X. Шаклет-том (1973), в Ирландии и Англии Дж.Уэббом, И.Торнтоном и К.Флетчером (1966), в нашей стране В.В.Ковальским (1974).
В заключение необходимо подчеркнуть, что природные геохимические аномалии в поверхностных водах Мировой суши очень локальны и не оказывают заметного влияния на баланс масс химических элементов в глобальных биогеохимических циклах.
3. Трансформация геохимического состава природных растворов на контакте речных и океанических вод
С суммарным речным стоком в океан поступают огромные массы химических элементов. Ежегодно с речным стоком выносится в составе взвесей и растворенных форм соответственно (млн. т): железа — 963 и 27; марганца — 20,5 и 0,41; цинка — 5,86 и 0,82; меди— 1,51 и 0,28; свинца — 2,8 и 0,04; никеля — 1,58 и 0,12; кобальта — 0,34 и 0,01. Согласно данным А. П. Лисицина и др. (1983), из этого количества более 92 % выпадает в краевых морях и особенно в устьях рек, лишь 7,8 % достигает глубоководных областей океана.