Корень из полувариации называют downside risk — риском отклонения вниз. Надо отметить, что эта мера имеет свои достоинства и свои недостатки.
Из недостатков отметим, что выбрасывается положительная сторона риска, связанная с превышением над ожиданиями. Кроме того, такой «риск» не может быть использован в качестве волатильности (изменчивости), а тогда и для ценообразования на производные финансовые инструменты.
С другой стороны, использование полувариации в рамках теории портфеля позволяет ослабить некоторые предположения традиционной модели ценообразования на финансовые активы (предположение о нормальном распределении доходности и предположение о том, что поведение инвесторов определяется ожидаемой доходностью и дисперсией доходности активов). [5]
В [Estrada, 2002a, 2002b] отмечается, что, во-первых, стандартное отклонение может использоваться только в случае симметричного распределения доходностей.
Во-вторых, стандартное отклонение может непосредственно использоваться в качестве меры риска только тогда, когда распределение доходностей нормальное. Эти условия не подтверждаются на эмпирических данных.
Кроме того, использование бета коэффициентов, которые выводятся в рамках традиционной поведенческой модели, в качестве меры риска на развивающихся рынках оспаривается многими исследователями, возможность использования полувариации, напротив, подтверждается на эмпирических данных.
Использование полувариации поддерживается также и интуитивными соображениями. Обычно инвесторы не избегают риска повышения доходности выше среднего, они избегают риска снижения доходности ниже среднего или ниже некоторого целевого значения. Поскольку инвестирование на развивающихся рынках является очень рискованным для западного инвестора, то западный инвестор, прежде всего, избегает риска потери первоначальной ценности своих инвестиций, или в соответствии с работой [Roy, 1952], избегает снижения этой ценности ниже определенного целевого уровня. Поэтому в качестве меры риска на развивающихся рынках целесообразно использовать полудисперсию и, соответственно, стандартное полуотклонение. [5]
В исследованиях [Синцов, 2003] тестировалась модель, в которой риск измеряется с помощью нижнего частичного момента второго порядка, то есть полувариацией. С одной стороны, использование полувариации является наиболее популярной модификацией модели CAPM, с другой стороны, использование полувариации позволяет применять доступные статистические методы эмпирической проверки модели ценообразования.
В данной поведенческой модели мерой взаимозависимости доходности данного актива и рыночного актива служит так называемая полуковариация, которая является аналогом ковариации в стандартной модели:
Полуковариация также является неограниченной и зависящей от масштаба. Но ее также можно нормировать, разделив на произведение стандартного полуотклонения данного актива и рыночного портфеля:
Аналогично, разделив ковариацию на полувариацию рыночного портфеля можно найти модифицированный бета – коэффициент:
Модифицированный бета коэффициент используется в альтернативной модели ценообразования. Эта модель, предложенная в [Estrada, 2002b] получила название D-CAPM (Downside Capital Asset Pricing Model):
Таким образом, бета коэффициент в традиционной модели CAPM предлагается заменять модифицированным бета коэффициентом, который является мерой риска актива в новой поведенческой модели, в которой поведение инвесторов определяется ожиданием и полудисперсией доходности.
Модифицированный бета коэффициент может быть найден как отношение полуковариации актива и рыночного портфеля и полувариации рыночного портфеля. Кроме того, модифицированный бета коэффициент может быть найден с помощью регрессионного анализа. [5]
Одно из возможных несовершенств развивающегося рынка — сильная асимметрия доходности активов учитывается в модели D-CAPM. Оказалось, что модифицированный бета-коэффициент модели D-CAPM лучше подходит для описания средней доходности на казахстанском рынке ценных бумаг по сравнению со стандартным бета-коэффициентом.
Модель DCAPM частично решает проблему недооценки требуемой доходности на развивающихся рынках при использовании стандартной модели CAPM. Поэтому использование модели D-CAPM на развивающихся рынках кажется предпочтительным. Для этого также есть теоретические основания, поскольку модель D-CAPM имеет менее жесткие исходные предположения по сравнению со стандартной моделью CAPM.
Тем не менее, строгая проверка показывает, что модель D-CAPM не соответствует динамике доходности развивающегося рынка. Таким образом, ни одна из моделей ценообразования капитальных активов: стандартная модель CAPM в версии Шарпа-Линтнера, модель CAPM в версии Блэка, модель D-CAPM не соответствует данным рынка ценных бумаг.
Возможно, главная причина неудач в попытках описать развивающийся рынок простыми модельными представлениями состоит в низкой ликвидности активов. Большие спрэды в котировках на покупку и на продажу есть лучшее отражение опасений инвесторов по поводу подавляющего большинства активов. Отсутствие потенциальных продавцов и покупателей есть серьезный риск для любого инвестора с разумным горизонтом инвестирования и, по-видимому, любая модель, пригодная для рынка, должна это учитывать. [5]
Глава 3. Эмпирические исследования возможности применения модели CAPM на развивающихся рынках
3.1 Критика САРМ и альтернативные меры риска
Ряд эмпирических исследований 70-х годов ХХ века доказывали преимущества САРМ в предсказании доходности акций. К числу классических работ можно отнести: [Black, Jensen, Scholes, 1972], [Fama & MacBeth, 1973], [Solnik, 1974].
Однако, критика САРМ в академических кругах началась практически сразу после публикации работ, посвященных модели. Например, работы Ричарда Ролла [Roll, 1977] акцентируют на проблемы, связанные с определением рыночного портфеля.
На практике рыночный портфель заменяется неким максимально диверсифицированным портфелем, который не только доступен инвестору на рынке, но и поддается анализу (например, фондовый индекс). Проблема работы с таким прокси-портфелем заключается в том, что выбор его может существенно повлиять на результаты расчетов (например, на значение бета).
В работах Р. Леви [Levy, 1971], М. Блюма [Blume, 1975] и Шоулза-Виллимса [Scholes, Williams, 1977] акцентируется внимание на проблеме устойчивости ключевого параметра САРМ - коэффициенте бета, который традиционно оценивается с помощью линейной регрессии на основе ретроспективных данных с использованием метода наименьших квадратов (Ordinary Least Squares, OLS). [3]
Это, по сути, вопрос о стационарности экономики и возможности построения оценок риска по прошлым данным. По результатам расчетов и анализа динамики коэффициента бета ряда отдельных акций и портфелей ценных бумаг Р. Леви пришел к выводу о том, что для любой акции ее бета- коэффициент не является устойчивым во времени и поэтому не может служить точной оценкой будущего риска. С другой стороны, бета портфеля, состоящего даже из 10 случайно выбранных акций, достаточно устойчив, и, следовательно, может рассматриваться в качестве приемлемой меры риска портфеля. Исследования М. Блюма показали, что с течением времени коэффициент бета портфеля приближается к единице, а внутренний риск компании приближается к среднеотраслевому или среднерыночному.
Альтернативным модельным решением проблемы устойчивости параметров САРМ являются оценки, получаемые на рынке срочных контрактов, когда за основу принимаются ожидания по ценам на финансовые активы. ТакойподходреализуетМСРМ (Market-Derived Capital Pricing Model).
В работе Бэнза [Banz, 1981] и Ролла [Roll, 1981] поднимается проблема корректности применения САРМ для малых компаний, т.е. акцентируется внимание на проблему размера (size effect, small firm effect).
Еще одна область критики – временные отрезки для расчета параметров САРМ (так называемая проблема горизонта инвестирования). Так как в большинстве случаев САРМ используется для анализа инвестиций с горизонтом больше одного года, то расчеты на основе годовых оценок становятся зависимы от состояния рынка капитала. Если рынок капитала эффективен (будущая доходность не предопределяется прошлой динамикой, цены акций характеризуются случайным блужданием), то горизонт инвестирования не значим и расчеты на базе годовых показателей оправданны. Если же рынок капитала нельзя признать эффективным, то время инвестирования не учитывать нельзя. [6]
Проблематичен и тезис САРМ о значимости только систематических факторов риска. Эмпирически доказано, что несистематические переменные, такие как рыночная капитализация или соотношение цена/прибыль, оказывают влияние на требуемую доходность.
Исследования 80-90-х годов ХХ века показали, что бета-коэффициент САРМ не в состоянии объяснить отраслевые различия в доходности, в то время как размер и другие характеристики компании в состоянии это сделать.
Другая область, подверженная критики, касается поведения инвесторов, которые часто ориентируются не на спекулятивный, а на чистый риск. Как
показывает практика, инвесторы готовы инвестировать в активы, характеризующиеся положительной волатильностью (т.е. превышением доходности над среднем уровнем). И напротив, инвесторы негативно воспринимают активы с отрицательной волатильностью. Двусторонняя же дисперсия является функцией отклонения от среднего как в сторону повышения курса акции, так и в сторону понижения. Поэтому, основываясь на расчете двусторонней дисперсии, акция, характеризующаяся изменчивостью в направлении повышения цены, рассматривается как рисковый актив в той же степени, что и акция, цена которой колеблется в направлении снижения. [6]