Смекни!
smekni.com

Планирование и прогнозирование расходной и доходной части бюджета (стр. 6 из 18)

Различают перспективную и ретроспективную экстраполяцию. Перспективная экстраполяция предполагает продолжение уровней ряда динамики на будущее на основе выявленной закономерности изменения уровней в изучаемом отрезке времени . Ретроспективная экстраполяция характеризуется продолжением уровня ряда динамики в прошлое.

Понятием, противоположным экстраполяции, является интерполяция, интерполирование, которое предусматривает нахождение промежуточных значений функции в области её определения. При изучении временных рядов в необходимости может производиться интерполирование промежуточных уровней.

Разграничивают формальную и прогнозную экстраполяцию. Формальная экстраполяция базируется на предложении и сохранении в будущем прошлых и настоящих тенденций развития объекта. Прогнозная экстраполяция увязывает фактическое состояние исследуемого объекта с гипотезами его развития. Она предполагает необходимость учёта в перспективе альтернативных изменений самого объекта, его сущности.

При формировании прогнозов с помощью экстраполяции исходят из статистически складывающихся тенденций изменения те или иных количественных характеристик объекта. Экстраполируются оценочные, функциональные, системные и структурные характеристики, например, количественные характеристики экономического, научного, производственного потенциала. Степень реальности такого рода прогнозов в значительной мере обусловливается аргументированностью выбора пределов «экстраполяции» по отношению к сущности рассматриваемого явления. Последовательность действий при статистическом анализе тенденций и экстраполировании состоит в следующем:

1. Чёткое определение задачи, выдвижение гипотез о возможном развитии прогнозируемого объекта, обсуждение факторов, стимулирующих или препятствующих развитию данного объекта, определение необходимой экстраполяции и её допустимой дальности.

2. Выбор системы параметров, унификация различных единиц измерения, относящихся к каждому параметру в отдельности.

3. Сбор и систематизация данных. Перед сведением их в соответствующие таблицы проверяется однородность данных и их сопоставимость.

4. Выявление тенденций или симптомов изменения изучаемых величин в ходе статистического анализа и непосредственной данных.

В экстраполяционных прогнозах предсказание конкретных значении изучаемого объекта или параметра в какой-то определённый период времени не считается основным компонентом. Особо важным здесь является своевременное фиксирование объективно процесса. Под тенденцией развития понимают некоторое его направление, долговременную эволюцию. Обычно тенденцию стремятся представить в виде более или менее гладкой траектории.

Для повышения точности экстраполяции используются различные приёмы. Например, экстраполируемая часть общей кривой развития ( тренд ) корректируется с учётом реального опыта функционирования отрасли – аналога исследований или объекта, опережающих в своём развитии прогнозируемый объект.

Тренд – это изменение, определяющее общее направление развития, основную тенденцию временных рядов. Под ним понимается характеристика основной закономерности движения во времени, в некоторой мере свободной от случайных воздействий. Тренд – это длительная тенденция изменения экономических показателей. При разработке моделей прогнозирования тренд оказывается основной составляющей прогнозируемого временного ряда, на которую уже накладываются другие составляющие. Результат при этом связывается исключительно с ходом времени. Предполагается, что через время можно выразить влияние всех основных факторов.

Задача прогноза состоит в определении вида экстраполируемых функций на основе исходных эмпирических данных и параметров выбранной функции. Первым этапом является выбор оптимального вида функции, дающей наилучшее описание тренда. Следующим этапом является расчёт параметров выбранной экстраполяционной функции. При оценке параметров зависимостей наиболее распространёнными являются метод наименьших квадратов и его модификаций, метод экспоненциального сглаживания, метод скользящей средней и другие.

Сущность метода наименьших квадратов состоит в отыскании параметров модели тренда, минимизирующих её отклонение от точек исходного временного ряда, т. е. минимизации суммы квадратических отклонений между наблюдаемыми и расчётными величинами. Модель тренда может различаться по виду. Её выбор в каждом конкретном случае осуществляется в соответствии с рядом статистических критериев. Наибольшее распространение в практических исследованиях получили следующие функции: линейная, квадратичная, степенная, показательная, экспоненциальная, логическая. Особенно широко применяется линейная, или линеаризуемая, т.е. сводимая к линейной форме, как наиболее и простая в достаточной степени удовлетворяющая исходными данными. Метод наименьших квадратов широко применяется в прогнозировании в силу его простоты и том, что модель тренда жёстко фиксируется, а это делает возможным его применение только при небольших периодах упреждения, т.е. при краткосрочном прогнозировании.

Метод экспоненциального сглаживания даёт возможность получить оценки параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Этот метод позволяет оценить параметры модели, описывающей тенденцию, которая сформировалась в конце базисного периода. Он не просто экстраполирует действующие зависимости в будущее, а приспосабливается, адаптируется к изменяющимся во времени условиям.

Метод экспоненциального сглаживания применяется при кратко- и среднесрочном прогнозировании. Его преимущества состоят в том, что он не требует обширной информационной базы и предполагает её интенсивный анализ с точки зрения информационной ценности различных членов временной последовательности. Модели, описывающие динамику показателя, имеют простую метематическую формулировку, а адаптивная эволюция параметров позволяет отразить неоднородность и текучесть свойств временного ряда.

Метод скользящей средней дает возможность выравнивать динамический ряд путем его расчленения на равные части с обязательным совпадением в каждой из них сумм модельных и эмпирических значений.

В целом методы экстраполяции, основанные на продлении тенденций прошлого и настоящего на будущий период, могут использоваться в прогнозировании лишь при периоде упреждения до пяти или семи лет. Важнейшим условием является наличие устойчиво выраженных тенденций развития какого-либо явления или процесса социально- экономической действительности. При более длительных сроках прогноза эти методы не дают точных результатов.

Распространение методикой описания тех или иных процессов и явлений служит моделирование, которое следует понимать как исследование объектов познания на их моделях. Она предполагает построение моделей реально существующих предметов и явлений: живых организмов, инженерных инструкций, общественных систем, различных процессов, в том числе и социально-экономических. Моделирование считается достаточно эффективным средством прогнозирования.

В научной литературе термин «модель» означает какой-либо условный образ объекта исследования. Модель – это схема, изображение или описание какого-либо явления или процесса в природе и обществе. Модель конструируется субъектом исследования так, чтобы операции отображали характеристики объекта, существенные для цели исследования (взаимосвязи, структурные и функциональные параметры и т.п.) Модель – один из важнейших инструментов бюджетного прогнозирования, научного познания исследуемого процесса. Поэтому вопрос об адекватности модели объекту (т.е. о качестве отображения) правомерно решать лишь относительно определённые цели.

Содержанием процесса моделирования являются: конструирование модели на основе предварительного изучения объекта или процесса, выделение его существенных характеристик или признаков; теоретический и экспериментальный анализ модели; сопоставление результатов моделирования с фактическими данными об объекте или процессе; корректировка и уточнение модели.

Для описания моделей (включая алгоритмы и их действия) используется математический аппарат. Это связано с преимуществами математического подхода к много стадийным процессам обработки информации, использованием идентичных средств формирования задач, поиска методов их решения, фиксации этих методов и их преобразования в программы, рассчитанные на применение средств вычислительной техники.

Средством изучения закономерностей развития социально-экономических процессов является экономико-математическая модель. Под экономическо-математческой моделью (ЭММ) понимается методика доведения до полного, исчерпывающего описания процесса получения и обработки исходной информации и правил решения рассматриваемой задачи в достаточно широком спектре конкретных случаев. ЭММ – это система формализованных соотношений, описывающих основные взаимосвязи элементов образующих экономическую систему.

Эконометрика - наука, изучающая конкретные количественные взаимосвязи экономических процессов с помощью экономико-математических методов и моделей. Система ЭММ эконометрического типа служит для описания относительно сложных процессов экономического или социального характера. Эконометрическое моделирование основано на обработке статистической информации ретроспективного характера, оценке отдельны переменных величин, их параметров.

Эта модель показывает зависимость потребности в финансировании от двух факторов; количества потребителей бюджетных услуг и норм расходов и называется дескриптивной (описательной).