Одержаний показник дає характеристику ризику на одиницю очікуваного результату. Завдяки порівнянню коефіцієнтів варіації двох проектів, вибирається проект із найменшим коефіцієнтом.
У нашому прикладі γА= 0,326, а γв= 0,298. У даному випадку видно, що укладення угоди з фірмою В менш ризиковане. Перевага статистичного методу — простота математичних розрахунків,.а явний недолік — необхідність великої кількості вихідних даних, оскільки чим більший масив вихідних даних, тим точніший розрахунок.
За допомогою статистичного методу оцінки ризику можна оцінити не тільки ризик конкретної угоди, а й підприємства в цілому за певний проміжок часу. Доведемо це на прикладі.
Приклад. Підприємство "Отар" — невеликий виробник різних продуктів із сиру. Один із продуктів — сирна паста — поставляється в країни ближнього зарубіжжя. Генеральний директор повинен вирішити, скільки ящиків сирної пасти слід виробляти протягом місяця. Імовірності того, що попит на сирну пасту протягом місяця буде 6, 7, 8 чи 9 ящиків, рівні відповідно 0,1; 0,3; 0,5; 0,1. Витрати на виробництво одного ящика дорівнюють 45 дол. Компанія продає кожен ящик за ціною 95 дол. Якщо ящик із сирною пастою не продається протягом місяця, то вона псується і компанія не одержує доходу. Скільки ящиків треба робити протягом місяця?
Розв'язання. Користуючись вихідними даними, будуємо матрицю гри. Стратегіями гравця 1 (компанія "Смачний сир") є різні показники числа ящиків із сирною пастою, які йому, можливо, варто виробляти. Природно виступають величини попиту на аналогічне число ящиків.
Обчислимо, наприклад, показник прибутку, який одержить виробник, якщо він зробить 8 ящиків, а попит буде тільки на 7. Кожен ящик продається по 95 дол. Компанія продала 7, а виробила 8 ящиків. Отже, виторг дорівнюватиме 7 х 95, а витрати виробництва 8 ящиків дорівнюватимуть 8 х 45. Разом прибуток від зазначеного поєднання попиту та пропозиції дорівнюватиме: (7х95)-(8х45)=305 дол. Аналогічно проводяться розрахунки при інших поєднаннях попиту та пропозиції.
У підсумку одержимо таку платіжну матрицю в грі з природою. Як бачимо, найбільший середній очікуваний прибуток дорівнює 352,5 дол. Він відповідає виробництву 8 ящиків.
На практиці найчастіше в подібних випадках рішення приймаються, виходячи з критерію максимізації середнього очікуваного прибутку чи мінімізації очікуваних витрат. Дотримуючись такого підходу, можна зупинитися на рекомендації виробляти 8 ящиків, і для більшості ОПР рекомендація була б обґрунтованою.
Однак, залучаючи додаткову інформацію у формі розрахунку середньоквадратичного відхилення як індексу ризику, ми можемо уточнити прийняте на основі максимуму прибутку чи мінімуму витрат рішення.
Згадаємо необхідні для наших досліджень формули теорії ймовірностей:
дисперсія випадкової величини:
середньоквадратичне відхилення:
де D і
- відповідно символи дисперсії математичного очікування.Проводячи відповідні обчислення для випадків виробництва 6, 7, 8 і 9 ящиків, одержуємо:
6 ящиків
D(x) = (300 - 300)2 (0,1 + 0,3 + 0,5 + 0,1) = 0;
σ = 0;
γ = σ/R = 0.
7ящиків
D(x)= 0,1х(255 - 340,5)2 + (0,3 + 0,5 + 0,1) х (350 - 340,5)2 = = 812,5;
σ =
= 28,5;у = σ / R = 28,5/340,5 = 0,08.
8 ящиків
D(x)=0,1 х (210 - 352,5)2+ 0,3 х (305 - 352,5)2 + (0,1 + 0,5) х (305- 352,5)2= 4061,25;
σ =
= 63,73;у = σ / R = 63,73/352,5 = 0,18.
9 ящиків
D(x)= 0,1 х (165 - 317)2 + 0,3 х (360 - 317)2 + 0,5 х (355 - 317)2 + 0,1 х (450 - 317)2 = 5776;
σ =
= 76;у = σ / R = 76/317=0,24.
З представлених результатів розрахунків з урахуванням отриманих показників ризиків — середньоквадратичних відхилень — очевидно, що виробляти 9 ящиків за будь-яких обставинах недоцільно, тому що середній очікуваний прибуток дорівнює 317 — менше, ніж для 8 ящиків (352,5), а середньоквадратичне відхилення (76) для 9 ящиків більше аналогічного показника для 8 ящиків (63,73).
А от чи доцільне виробництво 8 ящиків порівняно з 7 і 6 — не очевидно, тому що ризик при виробництві 8 ящиків (σ = 63,73) більший, ніж при виробництві 7 ящиків (σ = 28,5) і тим більше 6 ящиків, де σ = 0. Вся інформація з урахуванням очікуваних прибутків і ризиків у наявності. Рішення повинен приймати генеральний директор компанії з урахуванням свого досвіду, схильності до ризику і ступеня вірогідності показників ймовірностей попиту: 0,1; 0,3; 0,5; 0,1. Автори, з огляду на всі приведені числові характеристики випадкової величини — прибутку, схиляються до рекомендації виробляти 7 ящиків (не 8, що випливає з максимізації прибутку без урахування ризику!). Пропонується зробити свій вибір.
Найбільше поширена точка зору, згідно з якою мірою ризику певного комерційного (фінансового) рішення чи операції слід вважати середньоквадратичне відхилення (позитивний квадратний корінь з дисперсії) значення показника ефективності цього рішення чи операції.
Дійсно, оскільки ризик обумовлений недетермінованістю результату рішення (операції), то чим менший розкид (дисперсія) результату рішення, тим більше він передбачуваний, тобто менший ризик. Якщо варіація (дисперсія) результату дорівнює нулю, то ризик повністю відсутній.
Наприклад, в умовах стабільної економіки операції з державними цінними паперами вважаються безризиковими. Найчастіше показником ефективності фінансового рішення (операції) є прибуток.
Розглянемо як ілюстрацію вибір певною особою одного з двох варіантів інвестицій в умовах ризику. Припустимо, є два проекти А і В, у які зазначена особа може вкласти кошти. Проект А у визначений момент у майбутньому забезпечує випадкову величину прибутку. Припустимо, що її середнєочікуване значення (математичне очікування), дорівнює
з дисперсією . Для проекту В ці числові характеристики прибутку як випадкової величини передбачаються рівними відповідно з дисперсією . Середньоквадратичні відхилення дорівнюють відповідно і . Можливі такі випадки:а)
= , < , слід обрати проект А;b)
> , < , слід обрати проект А;с)
> , = , слід обрати проект А;d)
> , > , слід обрати проект A;е)
< , < , слід обрати проект А.В останніх двох випадках рішення про вибір проекту А чи В залежить від ставлення до ризику особи, що приймає рішення (ОПР). Зокрема, у випадку d проект А забезпечує вищий середній прибуток, однак він і більш ризикований. Вибір при цьому визначається тим, якою додатковою величиною середнього прибутку компенсується для ОПР задане збільшення ризику. У випадку для проекту А ризик менший, але й очікуваний прибуток менший.
Приклад. Розглянемо два варіанти виробництва нових товарів. З огляду на невизначеність ситуації з реалізацією товарів, керівництво проаналізувало можливі доходи від реалізації проектів у різних ситуаціях (песимістична, найбільш імовірна, оптимістична), а також імовірність настання зазначених ситуацій.
Результати аналізу, що є вихідними даними для розв'язання задачі, подані в табл. 3.
Таблиця 3. Вихідні дані
Зауважимо, що у випадку оптимістичної ситуації проект Б забезпечить 600 одиниць доходу. При цьому імовірність її настання 0,25. Проект А забезпечить 500 одиниць доходу з імовірністю 0,20, тобто при орієнтації на максимальний результат проект Б є кращим. З іншого боку, у випадку песимістичної ситуації проект Б забезпечить 80 одиниць доходу з імовірністю її настання 0,25, а проект А — 100 одиниць з імовірністю настання 0,20. Тобто при настанні песимістичної ситуації кращим є проект А. Неважко переконається, що ХA = ХB = 320, тому що