1. Однією з розповсюджених моделей оцінки ризиків є VaR модель. VaR - величина максимально можливих втрат, така, що втрати у вартості даного портфеля інвестора за певний період часу із заданою ймовірністю не перевищать цієї вели-чини. Таким чином, VaR дає імовірнісну оцінку потенційних збитків по портфелю протягом певного періоду при експертно заданому довірчому рівні. Існують три основних методи обчислення VAR: аналітичний (методом варіаіїи-коваріації), історичне моделювання і статистичне моделювання (метод Монте-Карло).
Основна ідея аналітичного методу полягає у виявленні ринкових факторів, які впливають на вартість портфеля, і апроксимації вартості портфеля на основі цих факторів. Перевага цього методу полягає в тому, що для більшості ринкових факторів всі необхідні параметри нормального розподілу добре відомі. Оцінка ризику в рамках методології VaR, отримана за допомогою аналітичного методу, збігається з оцінкою ризику, пропонованою сучасною портфельною теорією.
Метод історичного моделювання (historical simulation) є відносно простим підходом, який, на відміну від аналітичного методу, не опирається на теорію ймовірностей і вимагає відносно невеликого числа припущень щодо статистичних розподілів для ринкових факторів ризику.
Метод статистичних випробувань Монте-Карло (Monte-Carlo simulation) також відноситься до методів імітаційного моделювання, і в чинність цього він має ряд загальних особливостей з методом історичного моделювання. Основна відмінність полягає в тому, що в методі Монте-Карло не проводиться моделювання з використанням реально спостережуваних значень ринкових факторів, замість цього вибирається статистичний розподіл, який добре апроксимує зміни ринкових факторів, і проводиться оцінка його параметрів.
Загалом складно рекомендувати один з методів обчислення VaR. Вибираючи, якому з них віддати перевагу, необхідно враховувати макроекономічну ситуацію, а також мети й завдання конкретної організації. Як приклад опишемо застосування методології VaR при керуванні ризиками біржового термінового ринку.
2. Застосування методології VaR дозволяє в цілому вирішити завдання виміру ринкового ризику. Але крім того, що ринковий ризик необхідно правильно виміряти, необхідно також навчитися управляти ім. Керування ринковим ризиком являє собою дії по мінімізації ризику й захисту від нього. Керування ринковим ризиком повинне містити в собі наступні процедури:
1) вимір ринкового ризику для заданого портфеля (обчислення VaR);
2) рішення питання про прийнятність можливих втрат (у розмірі VaR);
3) можлива зміна портфеля з метою мінімізації його VaR (наприклад, хеджирование своїх позицій за допомогою термінових інструментів);
4) резервування капіталу в розмірі не меншому VaR для покриття можливих втрат.
3. Управління ринковим ризиком не вичерпується наведеними вище процеду-рами. Зокрема, ризик-менеджер зобов'язаний звертати увагу на коректність обраної ним моделі ринку, на репрезентативність використовуваних даних і правильність статистичних гіпотез. Тому при керуванні ринковим ризиком дуже корисним представляється також апостеріорний аналіз. Наприклад, обчисливши VаR для заданого портфеля, необхідно потім простежити, чи дійсно перевищення втрат над цим VаR відбувається лише в заданому малому відсотку випадків. Невідповідність фактичного відсотка перевищень теоретичному повинне наводити на думку про корекцію моделі або процедур обчислення VаR.
До недоліків також варто віднести те, що VaR вимагає проведення великої роботи зі збору історичних даних та їх обробки. Крім того, оцінка можливих змін вартості портфеля обмежена набором попередніх історичних змін. Типова проблема при використанні даного методу полягає у відсутності необхідного обсягу історичних даних. Щоб одержати більше точну оцінку VaR, необхідно використати якомога більший обсяг даних, але використання занадто старих даних приводить до того, що сьогоднішній (і тим більше майбутній) ризик буде оцінений на основі даних, які не відповідають поточному стану ринку.
4. В останні роки створення адекватної вартісної метрики ризику для різних видів орагнізацій стає однією з найбільш активно досліджуваних областей. Зокрема, сьогодні у світі для хеджування валютного ризику найчастіше використовують такий вид валютних деривативів, як форвардні валютні контракти. 59% всіх компаній хімічної промисловості, 52% металургійних компаній, 51% машинобудівних підприємств і 44% організацій, які займаються продажем товарів тривалого користування, використовують валютні форвардні контракти. До 42% автомобілебудівних компаній, підприємств харчової промисловості, транспортних компаній використовують валютні форварди.
Відповідно до VaR-рекомендацій Базельського комітету, позабалансові контракти повинні бути переведені в “балансовий інструмент” шляхом обчислення “кредитно-еквівалентної суми”, виробленого за допомогою додавання поточного ризику контракту і потенційного ризику контракту. Поточний ризик контракту визначається як вартість заміни контракту за існуючою ринковою ціною на момент обчислення кредитно-еквівалентної суми. Знаючи поточний ризик, можна відповістити на запитання: скільки буде коштувати заміна контракту за ринковою ціною, якщо контрагент відмовиться від виконання умов контакту сьогодні.
Крім того, методологія VаR стала особливо широко застосовуватися в останні роки й сьогодні використовується в якості єдиного уніфікованого підходу до оцінки ризику міжнародними банківськими і фінансовими організаціями. Наприклад, Банк міжнародних розрахунків (BIS) застосовує VаR як основу при встановленні нормативів величини власного капіталу щодо ризику активів.
Резюмуючи все вищесказане, можна сказати, що, у принципі, всі наведені моделі по управління інвестиційними ризиками є класикою інвестиційної оцінки ризиків. Насправді ж у світі використовується численна кількість моделей оцінки ризиків, кожна з яких має свої недоліки й переваги, які усуваються або доповнюються.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ:
1. Алєксєєв І.В., Захарчук О.В., Рим Н.Н. Банківський маркетинг. - Львів: Львівський банківський коледж Нац. банку України, 1998. - 96 с.
2. Альгин А.П. Грани экономического риска. - М.: Знание, 1991. - 64 с.
3. Бирман Г., Шмидт С. Экономический анализ инвестиционных проектов: Пер. с англ.- М: Банки и биржи, ЮНИТИ, 1997. - 631 с.
4. Вітлинський В.В., Великоіваненко Г. І. Ризикологія в економіці та підприємництві: Монографія. – К.: КНЕУ, 2004. – 480 с.
5. Вітлінський В.В. Актуальні проблеми ризикології. - К.: КДЕУ, 1996. Деп. в ДНТБ України. №Ук96. - 40 с.
6. Вітлінський В.В. Аналіз, оцінка і моделювання економічного ризику. - К.: ДЕМІУР, 1996. - 212 с.
7. Вітлінський В. В., Великоіваненко Г. І. Фінансовий ризик і методи його вимірювання // Фінанси України. - 2000. - № 5. - С. 13-23.
8. Денисенко М.П., Домрачев В.М. та ін. Кредитування та ризики: навч. посібник. - К. : Вид. дім «Професіонал», 2008. - 480 с.
9. Економічний ризик та методи його вимірювання: Посібник для студентів економічних спеціальностей вузів / А. Б. Камінський. - К.: ІМФ при Київському національному університеті імені Тараса Шевченка, 2002.
10. Коломина М.Е. Сущность и измерение инвестионных рисков // Финансы. - 1994. - № 4. - С. 19-26.
11. Кононенко А.Ф., Холезов А. Д., Чумаков В. В. Принятие решений в условиях неопределённости. - М.: ВЦ АН СССР, 1991. - 197 с.
12. Лобанов А. Проблема метода при расчете valueatrisk // Рынок ценных бумаг. 2000. №21. с. 54 – 58.
13. Лобанов А., Порох А. Анализ применимости различных моделей расчета valueatrisk на российском рынке акций // Рынок ценных бумаг. 2001. №2. - С. 65-70.
14. Лобанов А.А., Чугунов А.В. Энциклопедия финансового риск-менеджмента. – М.: Альпина Бизнес Букс, 2009. – 644 с.
15. Машина І.Н. Економічний ризик та методи його вимірювання. – Київ: Центр навчальної літератури, 2003. – 188 с.
16. Риски в современном бизнесе. /П. Г. Грабовый, С. Н. Петрова, С. И. Полтавцев и др. - М.: Аланс, 1994. - 200 с.
17. Сарана М.А., Верченко П.І. Неокласичний підхід до побудови оптимального портфеля цінних паперів // Проблеми економічного ризику: аналіз та управління. Збірних наукових праць за матеріалами Першої Всеукраїнської науково-практичної конференції (26-28 жовтня 1998 р.). - К.: Міносвіти України, КНЕУ, 1998. - С. 68-69.
18. Шора О.Є. Застосування VAR-методології в практичній діяльності комерційних банків // Облік і фінанси АПК. - 2005. - №12. - С. 142-145.
19. Ястремський О.І. Основи теорії економічного ризику. Навчальний посібник для студентів екон. спец. навч. закладів. - К.: «АртЕк», 1997. - 248 с.
20. Attikouris K. T., Attikouris K. G., Nakos K. (2003). Measuring repayment risk in shipping loans. FreightMetrics. Athens.
21. Danielsson J., DeVries C. (2000). Value-at-Risk and Extreme Returns. Annales d’economie at de statistique. No. 60.
22. Duffie D., Pan J. (1997). An overview of Value-at-Risk. The Journal of Derivatives, Spring.
23. Giot P., Laurent S. (2003). Value-at-Risk for long and short trading positions. Journal of Applied Econometrics. Vol.18, pp.641-664.
24. Gordy M. (2000). A Comparative Anatomy of Credit Risk Models. Journal of Banking and Finance, 24 (1-2). - Р. 119-149.
25. Gupton, G.M., Finger, C.C. and Bhatia, M. (1997). CreditMetrics - Technical Document, Morgan Guaranty Trust Co. - Доступний з: http://www.riskmetrics.com/ research/techdoc
26. Haaf H., Reiss O. and Schoenmakers J. (2003). Numerically stable computation of CreditRisk+. Technical report, Weierstrass-Institut. – 210 р.
27. Hull J., White A. (1998). Incorporating volatility updating into the historical simulation method for Value-at-Risk. Journal of Risk.
28. Manfredo M., Leuthold R. (2001). Market risk and cattle feeding margin: an application of Value-at-Risk. Agribusiness: an international journal. Vol. 17, No. 3. Summer.
29. Manganelli S., Engle R. (2001). Value at risk models in finance. Working paper No.75. European Central Bank Working paper series.
30. Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2004. – 321 р.
31. web-сайт Першої фондової торговельної системи (ПФТС) www.pfts.com
32. Доклад «Модель оценки рисков VAR индивидуальных стратегий» // II Восточноевропейский риск-менеджмент форум 04.11.2003 // www.riskinfo.ru/analytics