Из приведенных выше скоростей генерации
Не следует, что количество образовавшегося изотопа при прочих равных условиях зависит от генезиса пород, их объема, состава и соотношений в геологических разрезах конкретных территорий.Образование іНе связано с наведенным (индуцированным) радиоактивным распадом лития. Эти процессы связаны с бомбардировкой ядер лития тепловыми нейтронами при естественном радиоактивном распаде. В этом процессе 4Не образуется несоизмеримо меньше. Вместе с тем соотношение 3Не/4Не должно быть вполне определенным, отражающим процессы естественного и наведенного радиоактивного распада (нейтроны космического происхождения не могут проникнуть на сколь-нибудь значимую глубину) и определяется следующим соотношением (там же, с.32):
3Не/4Не = Ψ(άn) РthfLi, где Ψ(άn) – выход нейтронов на одну ά-частицу, Рth– вероятность достижения нейтронами тепловых скоростей, необходимых для бомбардировки ядер лития, fLi– доля нейтронов, захваченных ядрами лития. Значение 3Не/4Не должно составлять в обычных гранитных породах – 10
, т.е. это отношение существенно зависит от состава пород, и прежде всего от содержания в них лития, продолжительности радиоактивных процессов (т.е. от возраста пород) и вероятности достижения нейтронами тепловых скоростей, необходимых для образования іНе.Перераспределение изотопов – "вызывается неравноценностью изотопов одного и того же элемента в химических реакциях и физических процессах" (там же, с.34). Перераспределение изотопов между реагентами осуществляется в соответствии с энергетической выгодностью. "Изотопные соотношения… если и не сохраняются в течение их жизни, … являются … отправной точкой, от кoтopoй отсчитываются все nоследующие изменения." (там же, с.34).
Автор вводит понятие коэффициента разделения для оценки фракционирования изотопов. Разделение изотопов определяется обменными процессами при образовании веществ. Кинетический эффект разделения изотопов проявляется в открытых (незамкнутых) системах, в необратимых реакциях (все реакции в геологических процессах необратимы) и "обусловлен скоростью реакций разных изотопных форм. Фракционирование изотопов в ходе однонаправленных реакций заключается в предпочтительном накоплении легкого изотопа в продуктах реакции" (там же, с.38). Коэффициент фракционирования определяется через соотношение скоростей реакций изотопных форм. Кинематический эффект, так же как и термодинамический, зависит от температуры и с ее ростом уменьшается.
При больших массах веществ коэффициент разделения изотопов определяется из следующего соотношения
. Здесь μ = m – приведенные массы молекул. Поскольку μ*, всегда больше μ, то а всегда больше единицы. Точные расчеты а в большинстве случаев оценить или затруднительно, или невозможно.В однонаправленных реакциях изотопно-легкий продукт в начале реакции довольно быстро становится тяжелее исходного вещества, из чего следует, что при постоянном удалении изотопно-тяжелых порций изотопно-легкого продукта будет больше относительно исходного. При этом количество продукта в каждой последующей порции будет меньше.
Многие соотношения изотопов сильно изменяются во времени, что связано с содержанием радиоактивных и некоторых стабильных элементов. "Поэтому нельзя исключить, что разным типам пород будут свойственны свои изотопные соотношения" (там же, с.40), которые зависят от вещественного состава и возраста пород (что очень важно), но и от других причин.
Миграционные эффекты. К миграционным эффектам относятся: диффузия, растворение в жидких и твердых средах, их дегазация, сорбция и десорбция, испарение и конденсация и др. Все это многообразие процессов и их сочетаний в различных термодинамических условиях определяет сложность прогноза в соотношении изотопов. "Появлениегазов в термодинамической обстановке, отличной от той, в которой формировался их изотопный облик, смешение газов генетически чуждых генераций могут приводить к кажущимся "миграционным" изотопным эффектам" (там же, с.47).
Эффекты взаимодействия. Смешение и изотопный обмен различающихся изотопных форм различного генезиса способны приводить к вариациям изотопного состава. Эти процессы имеют широкое распространение из-за высокой подвижности природных газов.
"Инертные газы мантии также должны составлять смесь первичных и радиогенных газов, соотношение между которыми изменяется во времени из-за радиоактивных процессов и дегазации мантии" (там же, с.47). В осадочной толще тоже идет активное образование газов и их миграция в вертикальном направлении к поверхности Земли. Диагностика смешанных газов чрезвычайно сложна. Следует исходить из того, что в любой момент прошлого и в настоящее время содержание изотопов и их отношения не равновесны и меняются во времени с изменением термодинамических условий.
На неоднозначность заключений о генезисе УВ, получаемых на основании изучения соотношения изотопов, указывает Э.М. Прасолов в приведенной выше работе, а также последующих [15, 16].
Широкий диапазон изменения изотопного состава углерода установлен для карбонатов подводных грязевых вулканов Черного моря. Здесь значения δ
С меняются от -43,3 до -10,5%о, авторы (включая Э.М. Прасолова [15]) не могут однозначно интерпретировать этот факт и приводят "временное" его объяснение. Аналогичная ситуация складывается для природных карбонатных труб в районах подводной разгрузки флюидов в Кадисском заливе Атлантического океана [16]. И здесь так же объяснение носит предположительный характер.М.В. Родкина в своей работе [17] оспаривает вывод Э.М. Прасолова о пренебрежимо малом вкладе мантийных газов по данным изучения изотопного состава углерода и гелия и выделяет два вида погрешностей.
Первая погрешность связана с выбором характерных значений соотношений (погрешность, как в сторону завышения, так и в сторону занижения).
Обычно используется отношение СН
/іНе 10 , характерное для высокотемпературных фумарольных и вулканических газов, и даже "для наиболее обогащенных мантийной компонентой месторождений Тихоокеанского кольца получаем величину вклада мантийных УВ не более 0,1 – 0,5%" [17, с.131]. В низкотемпературных зонах (амагматические области) ситуация иная.Так, в тыловом бассейне Окинава характерная величина отношения СН
/іНе близка к10 и, как правило, меньше значения отношения іНе/ He, характерен также более легкий состав углерода. Кроме того, по геологическим данным нет оснований полагать обогащение этих газов газовыми компонентами осадочных пород. С удалением от вулканической области отношение іНе/ He уменьшается. Одновременно уменьшаются концентрации и утяжеляется изотопный состав СО ,растет относительная концентрация Н и СН4. Аналогичная ситуация наблюдается в Калифорнии, где отношение концентраций СН /іНе еще выше и составляет около 1010, а также наблюдается повышенное соотношение изотопов гелия. В этом районе несомненно обогащение метаном осадочных пород.Вторая погрешность связана "с неучетом потока субдуцированного вещества, предположительно поступающего из зон субдукции в мантию тыловых областей" [72, с.132]. Эти потоки могут быть двойного генезиса: мантийного и биогенного, что неизбежно приводит кзанижению мантийной составляющей.
В континентальной коре по данным петрологических исследований эпизодически (квазипериодически) возникает восстановление флюида из зон субдукции, что приводит к формированию флюидного режима. Это подтверждается результатами моделирования этого процесса и данными сейсмотомографии. Вместе с тем имеются доказательства существенного вклада мантийных газов в формирование месторождений УВ: во-первых – изотопия сопутствующих компонентов (Nd, Pb, Sr) в большинстве месторождений бывшего СССР и Китая подтверждает их коровое или мантийное происхождение; во-вторых – высокие значения іНе/
He свидетельствуют об их мантийном генезисе. Для месторождений, приуроченных к активным границам плит, это соотношение повышено. Тем не менее, это повышение незначительно, что интерпретируется не в пользу участия мантийных флюидов в формировании месторождений УВ.По утверждению М.В. Родкиной, интерес представляет не только средняя величина этого соотношения, но и характер вариаций изотопов для близко расположенных месторождений. На примере месторождений Калифорнии, Западной Сибири и района Green Tuff(Япония) показано, что при значительном разбросе точек для каждого района наблюдается высокая корреляция (выше 99%) величин отношения іНе/
He и изотопного состава УВ. Кроме того, эмпирические прямые для отношений lg(іНе/ He)/13С для всех районов субпараллельны. Рост іНе/ He приводит к утяжелению изотопного состава метана (до 20 – 30%), что соответствует увеличению вклада мантийной составляющей. Представленная на рисунках в работе [17] закономерность изменения отношения lg(іНе/ He)/13С , по мнению автора, не является универсальной. Например, она не выполняется для центральных частей Америки, широтного Приобья. Приведённые данные свидетельствуют о значительном обогащении континентальных окраин рециклированным флюидом и стирании мантийных изотопных меток со временем вверх по разрезу.