Смекни!
smekni.com

Использование анализа чувствительности реагирования в процессе оценки риска инвестиционного проекта (стр. 1 из 3)

Использование анализа чувствительности реагирования в процессе оценки риска инвестиционного проекта.

Наиболее часто встречающимися методами количественного анализа рисков проекта, являются анализ чувствительности (уязвимости), анализ сценариев и имитационное моделирование рисков по методу Монте-Карло.

Проведение количественного анализа проектных рисков опирается на базисный вариант расчета проекта. Задача количественного анализа состоит в численном измерении влияния изменений рискованных факторов на эффективность проекта.

Анализ чувствительности (уязвимости) происходит при "последовательно-единичном" изменении каждой переменной: только одна из переменных меняет значение, на основе чего пересчитывается новое значение используемого критерия (например, критерия чистого дисконтированного дохода NPV). Затем оценивается процентное изменение критерия по сравнению с базисным случаем и рассчитывается показатель чувствительности, представляющий собой отношение процентного изменения критерия к изменению значения переменной на один процент (так называемая эластичность изменения показателя). Таким же образом исчисляются показатели чувствительности по каждой из остальных переменных.

По результатам этих расчетов происходят экспертное ранжирование переменных по степени важности (например, "очень высокая", "средняя", "невысокая") и экспертная оценка прогнозируемости (предсказуемости) значений переменных (например, "высокая", "средняя", "низкая")· Далее эксперт строит матрицу чувствительности, позволяющую выделить наименее и наиболее рискованные для проекта переменные (показатели).

Анализ чувствительности — простейший и поэтому наиболее используемый количественный метод исследования рисков. Однако в его простоте кроются некоторые недостатки:

во-первых, этот метод является экспертным, т.е. разные группы экспертов могуг получить различные результаты;

во-вторых, в ходе анализа чувствительности не учитывается связь (корреляция) между изменяемыми переменными.

Цель анализа чувствительности выявить важнейшие факторы, так называемые "критические переменные", способные наиболее серьезно повлиять на проект и проверить воздействие последовательных (одиночных) изменений этих факторов на результаты проекта. В теории эксперимента анализ чувствительности называют однофакторным анализом. Результаты проведенного ранее качественного анализа рисков проекта являются базой, фундаментом при отборе факторов для количественного анализа.

Классификация факторов, варьируемых в процессе анализа чувствительности:

первая группа — факторы, влияющие на обьем доходов (выгод) проекта;

вторая группа — факторы, влияющие на объем проектных затрат.

Варьируемые факторы, рассматриваемые на практике:

-показатели инфляции;

-физический объем продаж как следствие емкости рынка, доли предприятия на рынке, потенциала роста рыночного спроса;

-переменные издержки;

-постоянные издержки;

-требуемый объем инвестиций;

-стоимость привлекаемого капитала в завиеимости от условий и источников его формирования (например, процент за кредиты).

В инвестиционном проектировании анализ чувствительности играет важную роль для учета неопределенности и выделения факторов, которые могут повлиять на успешный результат проекта. Кроме того, анализ чувствительности лежит в основе принятия ряда управленческих решений. Так, например, если цена продукта оказалась критическим фактором, то можно усилить программу маркетинга или пересмотреть затратную часть, чтобы снизить стоимость проекта. Если же проведенный количественный анализ рисков проекта выявит его высокую чувствительность к изменению объема производства, то следует уделить внимание мерам по повышению производительности, например, обучению персонала менеджменту и др.

В формировании денежного потока проекта, а следовательно, и в расчете его критериев эффективности участвуют многие факторы и позитивного (доходного), и негативного (расходного) характера с точки зрения конечной результативности проекта. В качестве примера рассмотрим некоторые из факторов, учет изменения которых необходим при проведении анализа чувствительности.

К позитивным факторам прежде всего можно отнести: задержку оплаты за поставленное сырье, материалы, комплектующие, а также период времени поставки продукции с момента получения авансового платежа при реализации продукции или услуг на условиях предоплаты. Однако задержка оплаты за сырье имеет позитивное влияние на результат только в том случае, если цена материалов и комплектующих определяется на дату поставки и соответствует текущему уровню цен. Важной является группа факторов, связанная с формированием и управлением запасами. Объектом анализа должны стать факторы, характеризующие условия формирования капитала.

Анализ точки безубыточности, широко используемый в международной практике — простейший способ, позволяющий проводить грубую оценку риска проекта по методу чувствительности.

В качестве другого способа анализа чувствительности проекта можно использовать задачу математического программирования.

Рассмотрим простой пример, иллюстрирующий возможности использования методов математического программирования для решения задачи организации бизнеса и анализа проектных рисков.

Пример. Некий бизнесмен решил создать компанию, сдающую в аренду клиентам офисное оборудование (например, факсы и ксероксы), которое он предполагает закупить. Предположим (для простоты), что каждый договор с клиентом об аренде имеет длительность два года и заключается в момент закупки оборудования компанией, т.е. в начале первого года. Проведенный компанией анализ рынка позволяет утверждать, что существует неограниченный спрос на предлагаемое в аренду оборудование по стандартной арендной плате, общая сумма которой будет выплачена в конце второго года. Чистый дисконтированный доход, полученный бизнесменом от сдачи в аренду каждого факса и каждого ксерокса, составит 400 и 500 ден. ед, соответственно. Стоимость факса 300 ден. ед., из которых часть (100 ден. ед.) выплачивается в конце первого года, а остальная сумма (200ден.ед.) — в конце второго, ксерокс стоит 400 ден. ед., и схема выплат аналогична:

300 ден, ед, выплачиваются в конце первого года, а остальная сумма (100 ден.ед,) — в конце второго. Бизнесмен предполагает, что доступные ему ежегодные фонды ограничены и составляют 40 000 ден. ед. (в первый год) и 30 000 ден. ед. (во второй год).

Какое количество факсов и ксероксов следует приобрести бизнесмену, чтобы максимизировать суммарный чистый дисконтированный доход проекта?

Ответ на вопрос данной задачи можно получить с помощью методов линейного программирования.

Для построения модели задачи обозначим число единиц оборудования, которое нужно приобрести:

f — число факсов;

х — число ксероксов.

Введем ограничения:

100 f+ 300х < 40 000; (1)

200 f + 100х < 30 000. (2)

Экономический смысл построенных ограничений (1), (2) состоит в том, что ежегодные суммарные выплаты за приобретенные бизнесменом факсы и ксероксы не могут превышать размеров доступных ему ежегодных фондов. Кроме того, для реальных экономических величин должны выполняться ограничения:

f ≥ 0 (3)

х ≥ 0 (4)

Требуется максимизировать функцию

Z = 400 f+ 500 х (5)

при ограничениях (1)—(4).

Известно, что в случае двух переменных решение задачи математического программирования можно провести не только аналитически (например, используя симплекс-метод), но и графически. В нашем примере интерес представляет только целочисленное решение.

Рассмотрим графический вариант решения модели сконструированной по выражениям (1)—(5).

Заменив неравенство (1) равенством, построим в декартовой системе координат соответствующую прямую 1 (рис.1). Она разделит плоскость на две полуплоскости, расположенные над и под прямой. Неравенству (1) будут удовлетворять все точки, принадлежащие нижней полуплоскости и самой прямой 1.

Аналогичным образом отразим на графике решения неравенств (2)-(4).

Допустимое множество решений задачи линейного программирования находится в заштрихованной области и на ее границах.

Функционал (5) задачи строится аналогичным образом. Из всего допустимого множества (согласно теории математического программирования) представляют интерес только точки, расположенные в вершинах заштрихованной области:

А (0; 150); В (100; 100); С (400/3; 0); О (0; 0).


Рис.1. Графический вариант решения модели (1)—(5):

1 — в соответствии с выражением (1);

2 — в соответствии с выражением (2).

Максимального значения, равного 90 000 ден.ед., функционал (5) достигает в вершине В, т.е. максимальный чистый дисконтированный доход, равный 90000 ден.ед., бизнесмен может получить, если приобретет 100 факсов и 100 ксероксов.

Итак, в качестве функционала нашей модели был рассмотрен некий простейший аналог критерия NРV, а в качестве значений правых частей ограничений модели использовались лимиты ресурсов проекта в денежном выражении. Неизвестными в данной задаче являлись стоимостные значения объемов проектных услуг.

На основании теории двойственности в математическом программировании можно построить задачу, двойственную данной, а полученные при ее решении так называемые двойственные переменные (объективно обусловленные оценки, теневые цены, скрытые цены, неявные цены) позволяют определить альтернативную стоимость используемых в проекте дефицитных ресурсов.

Построим задачу, двойственную нашей.

Пусть p1 — двойственная оценка фондов в первый год;

p2 — двойственная оценка фондов во второй год.

В этих обозначениях, необходимо минимизировать общие альтернативные стоимости совокупного объема фондов в целом за период проекта, т. е. минимизировать функцию