Исследования связи магматизма и геодинамики на новейшем отрезке геологической истории приобретают еще один важный аспект – раскрывают связь магматизма с природной средой и открывают возможности экологического прогноза в этой области.
Территория развития кайнозойских платобазальтов Сирии расположена на северо-востоке Красноморской рифтовой области и характеризуется двумя уникальными геологическими структурами: внутриплитной складчатой зоной Пальмирид и континентальным Левантским (Мертвого моря) трансформным разломом, прослеживающимся от залива Акаба Красного моря до складчатых сооружений Тавра. Развитые здесь базальты на юге, с одной стороны, входят в состав огромного Сирийско-Иорданского лавового плато, а с другой – приурочены к трансформному разлому. Они являются типичными внутриплитными образованиями, характерными для мантийных плюмов (горячих точек).
Магматическая активность в регионе началась в раннем миоцене, 25 млн. лет назад, одновременно с раскрытием Красного моря, и продолжается практически до сих пор – последние извержения здесь наблюдались около 300 лет назад. Проведенное изучение показало, что здесь происходит активное механическое взаимодействие астеносферного диапира с земной корой, причем последняя отнюдь не является пассивным участником процесса. Так, например, формирование Пальмирид, обусловленное деформациями земной коры Аравийской плиты в процессе ее движения на север, привело к прекращению вулканизма на участке их развития и его резкому усилению к северу и югу от него. Очевидно, это связано с погружением корней структуры Пальмирид в кровлю астеносферы и прекращением здесь магмообразования. По мере развития Пальмирид происходило постепенное перетекание астеносферного вещества к северу и востоку от Пальмирид, обеспечивших миграцию магматической активности на север и на восток. К югу от Пальмирид такой перестройки рельефа кровли астеносферы не происходило, и извержения здесь с небольшими перерывами продолжались на протяжение 20 млн. лет.
Появлению Левантского разлома предшествовала рассредоточенная вулканическая деятельность в раннем-среднем миоцене. Сам разлом образовался в позднем миоцене, 5–6 млн. лет назад. И только после этого стали формироваться лавовые плато, уже контролируемые структурой разлома.
Обращает на себя внимание наличие новейшего вулканизма в пределах грабенов вдоль оси Левантского разлома (Эль-Габ, Тибериадское озеро, Мертвое море). Это свидетельствует о наличии под ними локальных выступов кровли астеносферного диапира, за счет растекания которых и образовались сами грабены, обязанные своим происхождением как мантийному диапиризму, так и сдвиговым процессам вдоль Левантского разлома.
Таким образом, проведенное исследование показало, что области внутриплитного вулканизма периферии новообразующегося океана могут устойчиво существовать на протяжение не менее 25 млн. лет. При этом в их пределах происходит активное механическое взаимодействие кровли астеносферного диапира с земной корой, приводящее к закономерной миграции как вулканической, так и тектонической активности. Ведущую роль при этом играет астеносферный диапир, но деформации земной коры оказывают существенное влияние на формирование конкретных центров магматической активности.
Учитывая длительную (25 млн. лет) историю развития вулканизма в этом регионе в связи с его геодинамикой можно прогнозировать в будущем вулканический покой к северу от Пальмирид, в полях миоценовой активности, поскольку погружающиеся на север корни складчатых сооружений перекрыли здесь астеносферные очаги. На юге от Пальмирид в поле голоценового вулканического плато есть основания ожидать продолжения вулканической активности, поскольку глубинная ситуация и характер взаимодействия астеносферы и литосферы здесь не изменяется. т.е. экологическая угроза сохраняется.
Пример еще более локального прогноза экологических последствий современного вулканизма дает комплексное (геодинамическое, магматологическое, изотопно-геохимическое, геофизическое и геотермическое) изучение вулкана Эльбрус в Северо-Кавказском регионе.
Вулкан Эльбрус, расположенный в густонаселенной части юга России на Северном Кавказе, считался потухшим. Его вулканическая постройка имеет в плане изометричную форму (диаметр основания до 18 км, а диаметр сохранившегося кратера восточной вершины до 250 м) и покрыта мощным ледниковым панцирем. В последнее время появились новые данные, позволившие пересмотреть эту точку зрения.
1. Под Эльбрусом выявлена отрицательная гравиметрическая аномалия, которая, вероятно, отражает наличие на глубине магматического очага вулкана с температурой не ниже 700 °С.
2. В Приэльбрусье были зарегистрированы землетрясения с частотой колебания 1–2 Гц и устойчивым присутствием на сейсмограммах интенсивной поверхностной волны (Хитаров и др., 1985), резко отличающимися по этим параметрам от землетрясений в других частях Северного Кавказа (5–6 Гц). Эти данные свидетельствуют, скорее всего, о наличии на глубине разуплотненного вещества. Выявленная в районе Эльбруса специфичная картина микросейсмичности обычно наблюдается в пределах вулканических полей действующих вулканов.
3. На существование под вулканом Эльбрус еще не остывшего магматического очага указывают: аномально высокая (4,8*10–5 кал/см2сек) плотность теплового потока, более чем на порядок превышающая фоновый показатель для Северного Кавказа; наличие фумарольной деятельности и термальных минеральных источников.
Все вышеуказанные аномалии, выявленные в пределах Эльбрусского вулканического центра, практически совпадают с гравитационными минимумами – 80 мГл (Приэльбрусье) и – 100–120 мГл (Эльбрус, с экстремально низкой плотностью 2,1*103 кг/м3) на фоне гравитационного поля для Центрального Кавказа в –20–40 мГл, а также со знакопеременными магнитными аномалиями, (от –7 до +12,7*102 нТл), установленными в районе Эльбруса на фоне относительно спокойного магнитного поля (0–2 нТл) для Центрального Кавказа.
Проведенный нами анализ единичных, часто противоречивых, радиологических, палеомагнитных и геологических (соотношения с датированными моренами и периодами оледенений) данных говорит о том, что породы вулкана Эльбрус сформировались, по-видимому, в интервале от позднего плиоцена - раннего плейстоцена до голоцена при последних извержениях вулкана не древнее 3000 лет. Последние радиоуглеродные датировки указывают на очень молодой возраст пеплов, туфов и лав Эльбруса порядка 900–2500 лет (в печати).
Прогнозной оценкой возможной активности вулкана Эльбрус и были обусловлены те комплексные исследования, которые мы начали и собираемся проводить совместно с вулканологами Камчатки и США. На первом этапе исследований нами была составлена геологическая карта Эльбруса и проведен анализ динамических характеристик вулканизма Эльбрусского центра. Расчеты показали, что после первого полного цикла активности (нижний плейстоцен – верхи верхнего плейстоцена), с практическим прекращением вулканической активности в конце цикла, устанавливается резкое увеличение объемов изверженного материала в голоцене, что, возможно, может фиксировать начало следующего цикла активности, чего не наблюдается для вулкана Казбек.
Принципиальное значение для предсказания типа (спокойный или катастрофический) предполагаемых извержений имеют данные о происхождении родоначальных магм вулкана Эльбрус. В содружестве с лабораторией изотопной геохронологии ИГЕМ РАН были начаты комплексные исследования изотопных систем пород Эльбрусского центра. Вопреки существующим представлениям об исключительно коровой природе новейших лав Эльбрусского вулканического центра нами впервые установлена существенная роль мантийной компоненты в их первичных расплавах. На мантийную природу основной составляющей источника магм, давших новейшие лавы Эльбрусской области, указывают, в частности, изотопный состав неодима (Nd от +1,3 до –3,5), стронция (87Sr/86Sr = 0,70506–0,70590), отрицательная, близкая к мантийной, корреляция между 87Sr/86Sr и 143Nd/144Nd для лав Эльбрусского центра. Наш вывод подтверждается результатами измерений гелия в подземных флюидах Большого Кавказа, проведенных Б.Г. Поляком и др. (1996). Установлены максимальные значения примесей мантийного гелия в Приэльбрусье (3He/4He = 260*10–8) и особенно в районе вулкана (3He/4 He от 360*10 –8 до 800*10 –8) при фоновых значениях для Северного Кавказа порядка 5–31*10–8. Распределение же 3He/4 He не прямо коррелируется с распределением плотности теплового потока, обусловленного разгрузкой тепломассопотока из мантии в кору. Выявлено, что наблюдаемая неоднородность изотопного и вещественного состава новейших вулканитов в пределах Эльбрусской вулканической области чаще всего связана с процессами контаминации исходных мантийных расплавов сиалическим коровым материалом. В пользу контаминации первично мантийного расплава коровым компонентом свидетельствуют, в частности, повышенные значения 18 О (6,8–7,5%) в лавах Эльбрусского комплекса