Для выбранных параметров разреза на рис.9 приведен единый график А (α) и В (α) = 1 + А (α), снабженный двумя шкалами оси ординат со смещенными на единицу нулями. В нижней части рисунка изображены схематические импульсоиды падающей волны u (t) и вторичных волн - отраженной
и проходящей для различных углов падения.Как видно из рисунка, при малых углах падения изменения спектральных коэффициентов А и В незначительны. Соответственно, малы и изменения амплитуды вторичных волн. Это является благоприятным фактором для сейсмической разведки.
Рис.9
С приближением угла падения к
спад кривой ускоряется, отраженная волна затухает до нуля при , а амплитуда проходящей волны стремится к амплитуде волны падающей.При углах, больших
, происходит стремительное падение кривой к пределам: А (α → 90°) → -1; B (α → 90°) → 0. Отраженная волна, поменяв знак смещения на обратный при , стремится к падающей волне с инвертированным знаком смещения. Проходящая волна столь же быстро затухает до нуля.Нижняя среда - более плотная и имеет большую скорость распространения волны, чем верхняя:.
и .В соответствии с законом Снеллиуса, угол прохождения всегда больше угла падения и равному ему угла отражения:
. При изменении угле падения от нуля до теоретически возможного предела 90° угол прохождения растет быстрее и становится равным 90° при . В этом случае и ,где
- критический угол падения. При таком падении проходящая волна не уходит в глубь нижней среды, а скользит вдоль границы со скоростью .Эта скользящая волна порождает в верхней низкоскоростной среде вторичную волну, называемую в сейсморазведке головной или преломленной. На регистрации таких волн основан второй метод сейсморазведки - метод преломленных волн (МПВ), - первым и основным, но вторым по времени возникновения, является метод отраженных волн (МОВ).При нормальном падении все косинусы равны единице, коэффициент отражения отрицателен, а коэффициент прохождения меньше единицы. Следовательно, в этом случае отраженная волна противоположна падающей по знаку смещений (отражение с потерей полуволны), а проходящая волна имеет меньшую амплитуду, чем волна падающая:
при α = 0 и A < 0 и
B < 1 и = B · u (τ) < u (τ).При критическом угле падения
угол прохождения и А = 1, В = 1 + А = 2. Отраженная волна имеет ту же амплитуду, что и волна падающая, а проходящая волна по амплитуде вдвое превосходит ее:при
А = 1 и В = 2 и .Видно, что и при
коэффициент отражения меняет свой знак: при нормальном падении А < 0, а при А = 1 > 0, и существует угол , при котором А = 0 и , В = 1 и , - отраженной волны нет, есть только проходящая вторичная волна с амплитудой, равной амплитуде падающей волны. Синус этого угла определен ранее, но, так как , формулу для удобнее записать, умножив числитель и знаменатель подкоренного выражения на - 1: .При дальнейшем увеличении угла падения, когда
, коэффициент отражения А стремительно возрастает от 0 при до 1, при одновременно и также быстро В растет от 1 до 2. Однако, более существенные изменения коэффициентов А и В и вторичных волн - отраженной и проходящей - происходят, когда угол падения становится больше критического. Если (напомним, ), в соответствии с законом Снеллиуса: исинус угле прохождения при закритическом падении становится больше единицы (?!). Это не может быть в области действительных тригонометрических функций. Определим косинус угле прохождения по обычной формуле:
, так как .Синусу, большему 1, соответствует чисто мнимый косинус.
Встретившись с этой неожиданной трансформацией косинуса, мы, из осторожности, записали оба возможных знака (±) корня. Установим, какой из них имеет физический смысл. Для этого вспомним описание проходящей волны (в волновой аргумент которой и входит
) и ее спектра:Подставим в последнее определение
:Наличие мнимой единицы в определении косинуса выводит зависимость от z из функции запаздывания и превращает ее в амплитудный множитель
. Если определить , то с ростом z (то есть, при удалении от границы и от предполагаемого источника колебаний) амплитуда гармоники частоты ω неограниченно возрастает:при z → ∞
.Физически это абсолютно невозможно, поэтому из двух знаков мнимого косинуса следует выбрать минус:
. Тогда амплитуда вторичной волны, определяемая множителем , стремится к нулю при удалении от границы (z → ∞).Однако, спектр импульсного сигнала определен на всем бесконечном интервале частот: - ∞ ≤ ω ≤ ∞ и в волновом импульсе присутствуют как гармоники с положительными частотами, так и гармоники с ω < 0. Знак минус в определении
“правильно действует" только для положительных частот. Для отрицательных частот знак минус гаснет и амплитуда гармоники частоты ω < 0 неограниченно возрастает по мере удаления от границы z → ∞. Это - снова нереально.Чтобы обеспечить затухание всего спектра волны
как для положительных, так и для отрицательных частот, определим: