при α =
Отраженный сигнал представлен только Гильберт-трансформантой первичной волны:
Синус его равен:
и не намного превышает
Дальнейшее увеличение угла падения (α >
В пределе, при
С увеличением угла падения при
При этом отраженный сигнал повторяет по форме и амплитуде колебаний падающую волну с инвертированным знаком смещений. Напомним, что такой же предел был выявлен и в случае
Анализ закритических изменений спектрального коэффициента прохождения В и вызванных ими трансформаций неоднородных плоских волн
Для комплексных коэффициентов рассеивания А = ReA + jImA; B = ReB + jImB имеем:
ReB + jImB = 1 + ReA + jImA.
Видно, что А и В имеют действительные части, различающиеся на единицу, и равные мнимые части:
ReB = 1 + ReA; ImB = ImA.
Напомним, что связь между А и В получена из первого граничного условия (для упругих смещений):
В соответствии с ним, при любых соотношениях физических свойств контактирующих на границе сред и при любом угле падения первичной SH-волны при z = 0 проходящая волна
Поэтому все трансформации отраженной волны в закритической зоне входят составной частью в изменения проходящей волны.
Вне зависимости от угла падения в этой волне всегда присутствует “постоянная" составляющая - первичная, падающая на границу волна, по предположению, не меняющаяся с изменением угла падения.
В заключение приведем цифровые оценки особых углов падения
Это - довольно “сильная” отражающая граница.
Ей может соответствовать, например, граница между обводненной верхней средой (где скорость S-волны резко уменьшена) и “сухим” нижним полупространством.
При нормальном падении (α = 0) SH-волны коэффициенты рассеивания равны:
Отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, и инвертирована по знаку смещения. Проходящая волна ослаблена по амплитуде на четверть в сравнении с падающей волной. Для выбранных параметров сред определим отношения волновых сопротивлений
угол
критический угол
угол
Как видно из этих оценок, зона наибыстрейшего и наибольшего изменения спектральных коэффициентов рассеивания (СКР) и вторичных волн весьма узка:
Вне зоны (
С увеличением различия свойств контактирующих на границе сред все особые точки (
Рис.10
Описание изменений СКР SH-волны иллюстрирует (рис.10), на котором построены графики
Импульсоиды вторичных волн соответствуют углам падения, отмеченным на шкале оси абсцисс стрелками.
В заключение анализа отметим, что угол падения α определяет удаление х точки приема Р от точки возбуждения 0 (рис.11). Тангенс этого угла равен отношению половины удаления х/2 к эхо-глубине границы h:
Рис.11
Приведем оценки x/h, соответствующие особым углам для выбранных ранее параметров сред:
при