Таким образом, удельная поверхность представляет одну из важнейших характеристик горной породы.
Следует отметить, что, несмотря на кажущуюся простоту понятия удельной поверхности, изучение и точное определение ее величины — сложная задача. Дело в том, что поры в пористой среде представлены каналами размером от десятков и сотен микрон до размеров, сравнимых с размерами молекул. Поэтому удельная поверхность глин или других адсорбентов, играющая, например, роль в процессах адсорбции, не имеет для данного пористого вещества определенной величины, а зависит от размера адсорбируемых молекул. Только для молекул с близкими размерами принципиально возможно из опытных данных получить близкие значения удельных поверхностей одного и того же адсорбента.
Для мелкопористых адсорбентов и существенно отличающихся по размерам адсорбируемых молекул наблюдаются значительные отклонения в величинах удельной поверхности (явление это носит название ультрапористости).
Чтобы представить, какова удельная поверхность естественных пород, подсчитаем общую поверхность песчинок (шаровых) радиусом r= 0,1 ммв 1 м3песка.
Поверхность одной песчинки будет равна
Если пористость фиктивного грунта, сложенного песчинками одинакового диаметра, равна m, то объем, занятый песчинками в единице объема породы, будет V = 1—m, а число песчинок в единице объема породы будет равно
Очевидно, что суммарная поверхность всех песчинок в единице объема породы будет равна
или
где d — диаметр песчинок в м; S — удельная поверхность в м2/м3; т — пористость в долях единицы.
Для песчинок радиусом г = 0,1 мм, следовательно, удельная поверхность будет равна (если пористость т = 0,26)
т. е. в 1 м3песка общая поверхность частиц составит 22000 м2.
Очевидно, что удельная поверхность глинистых пород может достигать еще большей величины и если поверхность пористой среды нефтяного пласта после окончания эксплуатации залежи останется смоченной хотя бы тончайшей пленкой нефти, это приведет к тому, что большие количества ее не будут извлечены на поверхность (табл. 6).
Таблица 6
Удельная поверхность кернов в м2/м3 некоторых нефтяных месторождений Советского Союза (по Ф.И. Котяхову и Л.И. Рубинштейну)
№ образца | Ташкала | Ромашкино | Туймазы |
1 | 121500 | 73000 | 38000 |
2 | 214000 | 85000 | 54000 |
3 | 330000 | 113000 | 52000 |
4 | 191000 | 72500 | 55000 |
5 | 56600 | 73000 | 90000 |
По результатам исследований Козени, Л. С. Лейбензона, К. Г. Оркина и других с удельной поверхностью связан ряд других свойств пород. Так, например, при использовании уравнения (1. 49) удельная поверхность породы по ее гранулометрическому составу может быть определена по формуле
где Р — масса породы в кг; Рi — масса данной фракции в кг; di — средние диаметры фракций в м, определяемые по формуле
где d’iи д’’i— ближайшие стандартные размеры отверстий сит.
По экспериментальным данным К. Г. Оркина при определении дельной поверхности по механическому составу в формулу (1. 50) следует ввести поправочный коэффициент, учитывающий повышение удельной поверхности вследствие нешаровидности формы зерен, величина которого равна
Используя уравнения, связывающие параметры фиктивного грунта, аналогичные формуле (1. 49), можно также установить зависимость между удельной поверхностью и другими параметрами реальных пород. Для этого при выводе соответствующих формул реальный грунт с неоднородными частицами заменяют эквивалентным естественному фиктивным грунтом, который обладает одинаковым гидравлическим сопротивлением фильтрации жидкости, с такой же удельной поверхностью, как и естественный грунт. Диаметр частиц фиктивного грунта, обладающего этими свойствами, принято называть эффективным (dэф). Сопоставляя формулы (1. 49) и (1. 50), можно видеть, что
или
С другой стороны, удельную поверхность можно выразить через гидравлический радиус δ:
Гидравлический радиус, как известно, равен отношению площади порового канала к его периметру и для поры с круглым сечением, с радиусом R
Тогда можно написать
Подставляя значение Rиз формулы (1. 19), получи
где k — проницаемость в м2; S — удельная поверхность в м2/м3. Если выразить проницаемость в дарси, то получим удельную поверхность в м2/м3:
Из формул (1. 56) и (1. 54) следует, что чем меньше радиус поровых каналов и проницаемость породы, тем больше ее удельная поверхность.
13) Механические свойства коллекторов
Упругость, прочность на сжатие и разрыв, пластичность — наиболее важные механические свойства горных пород, с которыми приходится сталкиваться при разработке и эксплуатации нефтяных месторождений. Перечисленные механические свойства пород влияют на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождения.
Так, например, упругие свойства горных пород совместно с упругостью пластовых жидкостей влияют на перераспределение давления в пласте при эксплуатации месторождения. Запас упругой энергии, освобождающейся при снижении давления, может служить значительным источником движения нефти по пласту к забоям скважин. Действительно, если пластовое давление снижается, то жидкость — вода и нефть — расширяется, а поровые каналы сужаются. Упругость пород и жидкостей очень мала, но вследствие огромных размеров пластовых водонапорных систем в процессе эксплуатации значительное количество жидкости (упругий запас) дополнительно вытесняется из пласта в скважину за счет расширения объема жидкости и уменьшения объема пор при снижении пластового давления.
Не менее существенный эффект упругости жидкости и пласта представляет не мгновенное, а постепенное перераспределение давления в пласте после всякого изменения режима работы скважины, после ввода новой или остановки старой скважины. Таким образом, при большой емкости пласта и высоком пластовом давлении с самого начала эксплуатации пласт будет находиться в условиях, для которых характерны длительные неустановившиеся процессы перераспределения пластового давления. Скорости этих процессов в значительной мере определяются упругими свойствами пород и жидкостей. Оказывается, что по скорости перераспределения давления при известных упругих свойствах пород и жидкости можно судить о проницаемости и других параметрах.
В процессе эксплуатации месторождения весьма важно знать также и прочность пород на сжатие и разрыв. Эти данные наряду с модулем упругости необходимы при изучении процессов искусственного воздействия на породы призабойной зоны скважин (торпедирование, гидроразрыв пластов), широко применяемых в нефтепромысловом деле для увеличения притока нефти.
Весьма важно также знать пластические свойства пород.
Известно, что породы пластов в естественном состоянии находятся в упруго-сжатом состоянии под действием веса вышележащих отложений. При проведении горных выработок это состояние всестороннего сжатия нарушается и создаются условия «вытекания» пород в выработку. Очевидно, что при этом нарушается существовавшее ранее естественное поле напряжений в районе выработки и при проведении гидравлического разрыва пластов, при торпедировании, при исследовании процессов разрушения призабойной зоны необходимо исходить из новых условий напряженного состояния пород в районе выработки, обусловленных соответствующим горным давлением, величина которого, кроме всех прочих свойств пород, как мы увидим дальше, зависит также и от пластичности породы, в которой проведена выработка.