Смекни!
smekni.com

Химический состав земной коры как фактор биосферы (стр. 2 из 3)

Величина радиуса иона калия составляет 0,133 нм. Его место в структуре может занять только катион с близкой величиной радиуса. Таковым является двухвалентный катион бария, радиус которого равен 0,134 нм. Барий менее распространен, чем калий. Обычно он присутствует в виде незначительной примеси в полевых шпатах. Только в особых случаях создается его значительная концентрация и образуется редкий минерал цельзиан (бариевый полевой шпат).

Аналогичным образом в распространенных минералах и горных породах избирательно задерживаются химические элементы, концентрация которых не так велика для образования самостоятельных минералов. Взаимное замещение ионов в кристаллической структуре благодаря близости их радиусов называется изоморфизмом. Это явление было обнаружено еще в начале XIX в., но его значение для глобальной дифференциации рассеянных химических элементов установлено только спустя столетие.

В результате изоморфизма рассеянные элементы закономерно концентрируются в определенных минералах. Полевые шпаты служат носителями бария, стронция, свинца; оливины – никеля и кобальта; цирконы – гафния и т.д. Такие элементы, как рубидий, рений, гафний, не образуют самостоятельных соединений в литосфере и полностью рассеяны в кристаллохимических структурах минералов-хозяев.

Изоморфные замещения – не единственная форма нахождения рассеянных элементов. Феномен рассеяния в земной коре проявляется в разных формах на разном уровне дисперсности.

Наиболее грубодисперсной формой рассеяния являются хорошо окристаллизованные, очень мелкие (обычно менее 0,01 – 0,02 мм в поперечнике) акцессорные минералы. Они образуют механические включения в породообразующих минералах (рис. 1.1).

Рис. 1.1 Включение акцессорных апатита (1) и циркона (2) в зерне полевого шпата. Прозрачный шлиф, увеличение 160´

Содержание акцессориев весьма незначительное, но концентрация рассеянных элементов в них настолько высокая, что эти элементы образуют самостоятельные соединения. В кристаллических породах в качестве акцессориев присутствуют циркон Zr[SiO4], рутил, реже анатаз и брукит, имеющие однотипный состав ТiO2, апатит Са5[РО4]3F, магнетит Fe2+Fe23+O4, ильменит FeTiO3, монацит СеРО4, ксенотим YPO4, касситерит SnO2, хромит ЕеСг2О4 и другие сорных апатита (7) и минералы группы шпинели, минералы группы колумбита (Fe, Mg) (Nb, Та)2О6 и др. Содержание акцессориев в некоторых породообразующих минералах, особенно в слюдах, довольно заметно.

В некоторых минералах, преимущественно среди сульфидов и им подобных соединений, широко распространены так называемые структуры распада твердого раствора – мелкие выделения минерала-примеси в веществе минерала-хозяина. Их примером могут служить «эмульсионная вкрапленность» халькопирита CuFeS2 и станина Cu2FeSnS4 в сфалерите ZnS, тонкие пластинчатые выделения ильменита FeTiO3 в магнетите Fe2+Fe23+O4, мелкие выделения минералов серебра в галените PbS. В результате в сульфиде свинца присутствует ощутимая примесь серебра, в сульфиде меди – примесь олова, в магнетите – примесь титана.

Применение поляризационного микроскопа и прозрачных шлифов позволило обнаружить в минералах не только твердые включения, но и микро-пустоты, заполненные остатками растворов, из которых осуществлялась кристаллизация (рис. 1.2).

Рис. 1.2. Микрополости в кварце: 1 – кристалл сильвина; 2 – кристалл галита; 3 – пузырек газа; 4 – жидкая фаза. Прозрачный шлиф, увеличение 900´


Это явление, впервые специально рассмотренное в 1858 г. основателем оптической петрографии Г. Сорби, к настоящему времени всесторонне изучено. Микрополости в минералах обычно содержат жидкую и газовую фазы, иногда к ним добавляются мелкие кристаллы. Проблема жидких включений была основательно проанализирована У. Ньюхаузом, который отметил присутствие в жидкостях тяжелых металлов (до нескольких процентов).

Некоторая часть примеси рассеянных элементов, легко экстрагируемая из тонко растертых мономинеральных проб, связана именно с жидкими включениями. Н.П. Ермаков (1972), изучив микровключения из флюорита, обнаружил в них n×10-1% цинка, марганца, n×10-2% бария, хрома, меди, никеля и свинца, n× 10-3% титана. В дальнейшем в жидких включениях были обнаружены и другие рассеянные элементы.

Вместе с тем тщательный анализ мономинеральных проб и использование электронного зондирования показали, что все без исключения породообразующие минералы содержат рассеянные элементы в настолько высокодисперсной форме, что они не могут быть обнаружены не только при помощи оптической, но и электронной микроскопии. В этом случае имеет место рассеяние элементов на уровне ионов и молекул. Формы такого рассеяния не ограничиваются рассмотренными ранее явлениями изоморфизма. Известны многочисленные случаи присутствия химических элементов в минералах, не имеющих никакой связи с изоморфизмом.

Результаты многих тысяч анализов, выполненных в разных странах за последние 50 лет, позволяют утверждать, что все породообразующие минералы являются носителями рассеянных элементов. Именно в них сосредоточена основная масса рассеянных элементов, содержащаяся в земной коре. Зная содержание минералов-носителей и концентрацию в них рассеянных элементов, можно рассчитать баланс внутри конкретной горной породы.

При изучении гранитов Тянь-Шаня было обнаружено, что в кварце, несмотря на ничтожную концентрацию свинца, заключено более 5% всей массы этого металла, содержащегося в породе (табл. 1.2).

Таблица 1.2. Распределение свинца в минералах, слагающих граниты хребта Джумгол

Минерал Содержание минерала, % Содержание свинца в минерале, мг/кг Общее количество свинца в породе
мг/кг %
Кварц 35,3 4 1,4 5,4
Полевые шпаты 59,5 40 23,8 91,5
Биотит 3,7 20 0,7 2,7
Магнетит 0,7 17 0,1 0,4
Сумма 26,0 100,0

Невозможно предположить изоморфное вхождение свинца, цинка или другого металла в структуру кварца, образованную комбинацией ионов кремния и кислорода. Между тем кварц служит носителем многих рассеянных элементов. Разработан особый метод оценки потенциальной рудоносности горных пород и жил по содержанию в кварце лития, рубидия, бора.

При экспериментальном изучении прочности закрепления рассеянных металлов в породообразующих минералах было обнаружено, что при обработке тонко измельченной минеральной массы последовательными порциями слабых кислотно-щелочных растворителей значительная часть металлов легко извлекается при первой же экстракции, причем это извлечение не сопровождается разрушением кристаллохимической структуры минералов. При дальнейших обработках количество экстрагируемых металлов резко сокращается или прекращается совсем. Это позволило высказать предположение, что часть рассеянных элементов не входит в собственно кристаллохимическую структуру, а приурочена к дефектам реальных кристаллов. Дефекты представляют собой разного рода трещины, причем настолько мелкие, что не обнаруживаются оптическим микроскопом. Легкость извлечения рассеянных металлов объясняется тем, что они связаны с поверхностью минерала-носителя сорбционными силами. В породообразующих силикатах эта форма нахождения рассеянных металлов составляет 10 – 20% от всей массы рассеянных металлов. В частности, непрочно связанная форма свинца в гранитах Тянь-Шаня составляет от 12 до 18% всей массы рассеянного элемента.

Можно выделить следующие формы нахождения рассеянных элементов в кристаллическом веществе земной коры:

I. Микроминералогические формы:

1. Элементы, входящие в акцессорные минералы.

2. Элементы, содержащиеся в микроскопических выделениях в результате распада твердых растворов.

3. Элементы, находящиеся во включениях остаточных растворов. П. Неминералогические формы:

4. Элементы, сорбированные поверхностью дефектов реальных кристаллов.

5. Элементы, входящие в структуру минерала-носителя по законам изоморфизма.

6. Элементы, находящиеся в структуре минерала-носителя в неупорядоченном состоянии.

Сочетание рассмотренных форм нахождения рассеянных элементов сильно меняется в зависимости от многих факторов. Соответственно меняется и суммарное содержание рассеянного элемента в разных участках земной коры.

3. Особенности распределения химических элементов в земной коре

Варьирование содержания элемента в разных пробах обусловлено многими независимыми причинами. Когда распределение величины определяется достаточно большим числом примерно равнодействующих и взаимно независимых причин, то оно подчиняется так называемому нормальному закону Гаусса. Его графическим выражением является кривая с симметричными ветвями по обе стороны максимальной ординаты. При нормальном распределении наиболее вероятным значением служит среднее арифметическое х, которое совпадает с наиболее часто встречающимися значениями – модой. Растянутость симметричной кривой по оси абсцисс, т.е. разброс значений в большую и меньшую стороны от моды, характеризуется средним квадратичным отклонением а.