Регрессионная зависимость строится в предположении о зависимости доходностей всех ценных бумаг только от одного фактора -
где
Если известны коэффициенты
Эти правила легко обобщаются на случай портфеля, состоящего из
где
Риск портфеля определяется :
где
Первое слагаемое в (2.20) характеризует рыночный (систематический, недиверсифицируемый) риск , а второе - собственный риск портфеля, который может быть уменьшен за счет диверсификации как показано на рис.2.7.
Однако по-настоящему значимое научное и практическое значение регрессионная аппроксимация в виде (2.12) и (2.13) получила в связи с использованием результатов Тобина для моделирования ценообразования долгосрочных активов на фондовом рынке.
С 1964 г. появляются работы Шарпа, Линтнера, Моссина, открывшие следующий этап в инвестиционной теории, связанный с так называемой моделью оценки капитальных активов, или САРМ(CapitalAssetPricingModel). Результаты, полученные в этих работах, основаны на исходных предположениях Марковица (см. п.2.2), дополненных следующими:
1. Для всех инвесторов период вложения одинаков.
2. Информация свободно и незамедлительно доступна для всех инвесторов.
3. Инвесторы имеют однородные ожидания, т.е. одинаково оценивают будущие доходности, риск и ковариации доходностей ценных бумаг.
4. Безрисковая процентная ставка одинакова для всех инвесторов
В совокупности все исходные предположения описывают так называемый совершенный рынок ценных бумаг, на котором отсутствуют препятствующие инвестициям факторы. Есть еще одно положение CAРM, которое обычно считают следствием теоремы о разделении: в состоянии равновесия каждый вид ценных бумаг имеет ненулевую долю в касательном портфеле, а структура касательного портфеля повторяет структуру рыночного портфеля в соответствии с долями капитализации ценных бумаг. Обоснованием служит следующее рассуждение: если касательный портфель одного инвестора не включает какую-то бумагу, это означает, что ее стараются продать все (так как инвесторы приобретают одинаковые по структуре рисковые составляющие своих портфелей), тогда рыночный курс этой бумаги под давлением избыточного предложения будет падать, а ожидаемая доходность соответственно расти - до тех пор, пока цена не станет равновесной, а доля в касательном портфеле - отличной от нуля. Противоположные события будут происходить при попытке инвесторов (всех одновременно) увеличить долю какой-то бумаги в рисковой части вложений.
На основе последнего утверждения и используя (2.11) можно записать выражение для ожидаемой доходности финансовых средств любого инвестора в состоянии равновесия рынка:
где, как и ранее,
(2.22) описывает эффективный фронт Тобина (рис.2.8) и получило название уравнение рынка капитала (CapitalMarketLine - CML). При этом величина
равна тангенсу угла наклона CML к оси ординат и отражает увеличение доходности при увеличении риска на единицу, т.е. предельную доходность риска вложений рынка при наличии рисковых и безрисковых активов. Поскольку CML касается эффективного фронта Марковица в точке
где
Приравнивая правые части двух последних выражений, можно получить выражение для ожидаемой доходности любой ценной бумаги в оптимальном портфеле:
которое называется уравнением линии рынка ценных бумаг (SecurityMarketLine - SML) и с учетом (2.13) может быть переписано с использованием коэффициента
Разность
Сравнение выражений для CML и SML показывает, что эти линии на плоскости
Используя уравнение SML, можно определить факт недооценки или переоценки ценной бумаги ( например, акции) не только по ее доходности, но и сравнением ее действительного курса и курса в соответствии с равновесной ценой риска, который обозначим через
откуда следует известная формула дисконтирования по безрисковой доходности, увеличенной на рисковую надбавку: