K = 0,304+0,0023exp (0.0628j)
где а = 0.074 – среднесуточное альбедо водной поверхности.
Длинноволновое излучение атмосферы Sa, Вт/м2, – один из наиболее важных источников поступления тепла в водоем при облачной погоде. Для его определения использовалась формула А.П. Браславского, рекомендованная для расчетов теплового баланса водоемов средних размеров (Одрова, 1979)
Sa = s(273.16+T2)4 (b1+b2), (6.3)
где s = 5.67×10-8 Вт/(м2 К4) – постоянная Стефана-Больцмана; T2 – температура воздуха над водотоком, оС
T2 = Ta + (θ – Ta) Кр, (6.4)
где θ - температура участка реки, оС; Та – температура воздуха на метеостанции, оС; Кр – коэффициент, учитывающий длину разгона ветра, определяемый в соответствии с указаниями для его расчета (Самохин, Соловьева, Догановский, 1980). Применительно к имеющимся данным Кр = 0,5.
b1 = (1-No) [0.475+0.19
], (6.5)b2 = 0.1Nн+0.85No, (6.6)
где Nн и No - нижняя и общая облачность в долях единицы.
e2 = ea + (0.8eo - ea) Кр. (6.7)
Здесь eo – максимальная упругость водяного пара при температуре поверхности водоема, Мб. Ее величина определяется по формуле
eo = 6,11exp (17.14θ/(235+ θ)) (6.8)
ea – абсолютная влажность воздуха на метеостанции, мб, определяемая по уравнению
, (6.9)где Td – температура точки росы, 0С; hо – относительная влажность, %.
Длинноволновое излучение поверхности водотока Slw, Вт/м2, описывается уравнением Стефана-Больцмана
Slw = sbо(273,16+θ)4, (6.10)
где bо – излучательная способность поверхности участка реки относительно абсолютно черного тела. Для чистой водной поверхности её значение принято равным 0,91.
Потери тепла на испарение Se, Вт/м2 с поверхности водотока определяются по зависимости
Se = 4,85×10-5rsE (597–0,57θ), (6.11)
где r =1000 кг/м3 - плотность воды; E – интенсивность испарения, мм/сутки. Слой испарения рассчитывается по формуле Б.Д. Зайкова (Михайлов, Добровольский, Добролюбов, 2007)
E = 0,14 (eo-e2) (1+0,72W2), (6.12)
где W2 – скорость ветра на высоте 2 м над водой, м/с, определяется в соответствии с указаниями (Самохин, Соловьева, Догановский, 1980)
W2 = K1K2Kр Wф, (6.13)
где K1 коэффициент, учитывающий изменение шероховатости местности в связи с местоположением флюгера метеостанции, К2 – коэффициент, учитывающий положение флюгера метеостанции с учетом орографии местности. Для метеостанции Тотьма они равны 1,8 и 0,9 соответственно.
Турбулентный теплообмен с атмосферой Sc, Вт/м2, рассчитывается исходя из уравнений потока тепла и влаги по зависимости, предложенной Б.Д. Зайковым,
Sc = 2,65 (Т2-θ) (1+0,72W2), (6.14)
Поступление тепла с атмосферными осадками Sr, Вт/м2. Тепло, поступающее в водоем с жидкими осадками, рассчитывается по выражению
Sr = 4,85×10-2Т2Н, (6.15)
где Н – слой жидких осадков, мм.
В соответствии с уравнением (6.1) получаем поток тепла на поверхности «вода – воздух» за 1 секунду. Расчет изменения температуры воды за сутки вычисляется в соответствии с формулой
(6.16)где С – теплоемкость воды, Дж/(кг0С), h – средняя глубина водотока (для р. Сухона принята равной 2,5 м). Таким образом, зная температуру воды в некоторый начальный момент времени, можно рассчитать ее изменение для любого промежутка времени по известным метеорологическим данным.
Таблица 6.3. Сравнение фактических и рассчитанных температур воды на участке р. Сухона (с. Шуйское – Великий Устюг)
Дата | 13.08.08 | 14.08.08 | 15.08.08 | 16.08.08 | 17.08.08 | 18.08.08 | 19.08.08 | 20.08.08 |
Расстояние от с. Шуйское, км | 0–53 | 59–117 | 123–135 | 137–213 | 220–260 | 260–304 | 310–340 | 347–370 |
θ,0С | 17,7 | 19 | 19,3 | 20,1 | 20,8 | 21,3 | 21,1 | 20,8 |
θр,0С | - | 18,6 | 19,5 | 20,5 | 20,7 | 21,6 | 22,6 | 22,7 |
Разность, 0С | - | -0,4 | 0,2 | 0,4 | -0,1 | 0,3 | 1,4 | 1,9 |
Сравнение фактических и рассчитанных температур воды показывает, что средняя ошибка за весь период измерений составляет 0,670С. В период 14 по 18 августа средняя ошибка расчета температуры воды составляет 0,280С. В последние два дня измерений (19 и 20 августа) рассчитанные температуры воды оказались выше по сравнению с фактическими данными. Возможно это связано с влиянием синоптических условий в районе Великого Устюга, отличающихся от условий метеостанции Тотьма, более низкими температурами.
Таблица 6.4. Метеорологические данные по станции Тотьма 13–20 августа 2008 г.
Дата | 13.08 | 14.08 | 15.08 | 16.08 | 17.08 | 18.08 | 19.08 | 20.08 |
Та,0С | 16,7 | 18,7 | 17 | 15,7 | 17,7 | 17,4 | 16,5 | 16,4 |
N, баллы | 0,8 | 0,5 | 0,3 | 0,9 | 1,0 | 1,0 | 1,0 | 0,8 |
Nh, баллы | 0,6 | 0,3 | 0,1 | 0,5 | 0,8 | 0,9 | 1,0 | 0,7 |
U, м/с | 2,3 | 2,7 | 2,0 | 2,0 | 1,7 | 2,0 | 2,0 | 2,3 |
X, мм | 4 | 0 | 0 | 0 | 0,3 | 0 | 4 | 6 |
Td | 14,7 | 15,8 | 13,8 | 16,8 | 13,3 | 15,8 | 15,8 | 14,9 |
hо, % | 83 | 88 | 82 | 85 | 94 | 91 | 96 | 91 |
Условные обозначения: Та – температура воздуха, N – общая облачность, Nh – низкая облачность, U – скорость ветра, x – количество осадков, Td – температура точки росы, hо – относительная влажность.
Таблица 6.5. Сравнение фактических и рассчитанных температур воды по метеорологическим данным (станция г. Великий Устюг) на участке Сухоны (с. Шуйское – Великий Устюг)
Дата | 13 авг | 14 авг | 15 авг | 16 авг | 17 авг | 18 авг | 19 авг | 20 авг |
Расстояние от с. Шуйское, км | 0–53 | 59–117 | 123–135 | 137–213 | 220–260 | 260–304 | 310–340 | 347–370 |
θ,0С | 17,7 | 19 | 19,3 | 20,1 | 20,8 | 21,3 | 21,1 | 20,8 |
θр,0С | 17,7 | 18,2 | 19,3 | 20,3 | 20,5 | 20,6 | 20,8 | 21,0 |
Разность, 0С | 0 | -0,8 | 0,0 | 0,2 | -0,3 | -0,7 | -0,3 | 0,2 |
Сравнение рассчитанных и фактических температур воды (рис. 6.2) показывает, что разность фактических и расчетных значений температуры воды за весь период наблюдений составил 0,40С, т.е. меньше по сравнению с расчетом по данным метеостанции Тотьма. Относительно большая ошибка получилась при расчете температуры воды за 14 августа, что связано с влиянием погрешностей учета синоптических условий по мере удаления от Великого Устюга и приближения к Тотьме. Средняя ошибка расчета температуры воды за период с 15 по 20 августа составила 0,280С, т.е. такую же величину, как и при использовании данных по Тотьме в качестве граничных условий.
Из этого следует, что уравнение теплового баланса обеспечивает достаточно точные оценки продольной изменчивости температуры воды на участках рек с длиной до 270 км, когда для р. Сухоны можно пренебречь влиянием более холодных грунтовых вод и теплообменом с грунтами, а также использовать данные по одной метеостанции. В этом случае точность расчета составляет не меньше 0,30С.
6.2 Изменение температуры воды по длине реки
Изменение температуры воды вдоль рек можно рассматривать с двух позиций. В первом случае можно считать изменение температуры воды непрерывной функцией расстояния. Во втором случае, распределение температуры воды вдоль потока описывается дискретной функцией. Применение такой формализации является вынужденным, но близким к реальным условиям измерений температуры воды, которые всегда являются дискретными.
В связи с условиями дискретности измерений и принятой модели однородности температуры воды на некотором участке реки, можно описывать изменение теплосодержания и температуры воды вдоль реки дискретной функцией. Эта функция зависит от множества факторов, которые рассмотрены в гл. 2 и разд. 6.1. Так как факторов формирования термического режима много, а данные о них мало, то одним из путей изучения продольной изменчивости температуры воды может быть поиск статистических зависимостей между ее величиной в произвольном створе реки и температурой воды на участках реки, удаленных от начального створа на расстояние x1, x2,….xm.
В работе изучены статистические связи между температурой воды на разных постах некоторых рек севера ЕТР. Для этого использованы данные из гидрологических ежегодников о ежедневных температурах воды за периоды весеннего нагревания (температуры воды выше 100С) и осеннего охлаждения (температуры воды ниже 100С) в 1961–1964 гг. Для анализа привлекались данные о температуре 3 рек: Вологды (приток Сухоны), Сухоны (составляющая Малой Северной Двины) и собственно Северной Двины. Температура воды в нижерасположенных створах этих рек может быть связана с температурой воды выше по течению, поскольку они образуют единую русловую сеть (рис. 6.3). В табл. 6.6 посты этих водотоков имеют общую последовательную нумерацию.