Смекни!
smekni.com

Особенности термического режима рек (стр. 6 из 18)


Рис. 3.1 Схема к поступлению и удалению тепла на гранях элементарного объема воды

Изменение потоков тепла вследствие физической (молекулярной) теплопроводности учитывается уравнением (Караушев, 1969)

(3.1)

где

- тепловой поток по i-му координатному направлению, обусловленный физической теплопроводностью, V – объем воды,
– интервал времени. В соответствии с законом Фурье поток теплоты
(Вт/м2), обусловленный этим механизмом теплопередачи, пропорционален градиенту температуры по направлению i и коэффициенту физической теплопроводности
(Вт/м2 ×0С):

. (3.2)

Замена

в уравнении (3.1) соотношением (3.2) приводит к выражению:

. (3.3)

Считая, что температурное поле изотропно (т.е.

) получаем:

. (3.4)

Поскольку сумма изменений частных потоков тождественно равна изменению теплосодержания (в соответствии с уравнение (2.1)), то

, (3.5)

где С – удельная теплоемкость, ρ – плотность воды. Раскрытие полной производной dq/dt преобразует уравнение (3.5) к уравнению теплопроводности (уравнению Фурье-Кирхгофа)

, (3.6)

где v, u, w – продольная, поперечная и вертикальная компоненты скорости соответственно. Члены, связанные с ними учитывают вклад процессов адвекции, дисперсии и конвекции в изменение температуры воды. Отношение

называется коэффициентом температуропроводности (м2/с).

В водных потоках изменение теплового состояния в основном зависит от турбулентного теплопереноса. Суммарный эффект влияния физической теплопроводности и турбулентного теплопереноса с учетом осреднения всех членов уравнения (3.6) дает (Алексеевский, 2006):

, (3.7)

где

– температура;
,
,
, – осредненные, а
,
– пульсационные продольная, поперечная и вертикальная компоненты скорости течения. Условия переноса тепла в турбулентных потоках характеризует коэффициент турбулентной температуропроводности
Он интегрально учитывает роль конвективной, адвективной, дисперсионной, а также турбулентной теплопередачи в суммарном изменении температуры объема воды. Роль физической теплопроводности несущественна по сравнению с турбулентным теплопереносом, поэтому уравнение (3.7) трансформируется к виду (Алексеевский, 2006):

, (3.8)

в котором использовано условие изотропности температурного поля (

). Более точным является выражение:

(3.9)

3.2 Эпюры вертикального распределения температуры воды

Закономерности вертикального изменения температуры воды q в реках изучены недостаточно. Первый способ теоретического описания распределения температуры воды по глубине реки был предложен В.А. Бергом (1962). Теоретические эпюры температуры хорошо согласуются с реальным изменением температуры воды по вертикали. Однако их получение трудоемко и ограничено условиями постановки решаемой задачи. В общем случае формулу для расчета теоретической эпюры температуры можно получить из уравнения (3.9). Для случая установившегося равномерного движения потока (

), отсутствия поперечных составляющих осредненной скорости, неизменных по длине потока x и его ширине z температур:

(3.10)

Производные в этом уравнении полные, поскольку учитывается изменение q лишь по одному координатному направлению. Согласно А.В. Караушеву (Караушев, 1977), коэффициент турбулентной диффузии

, (3.11)

где h – глубина потока, v – скорость течения в данной точке потока, а

M = 0,7Cш+6 (3.12)

при

и M = 48 = const при
. Этот параметр, как и коэффициент Шези, имеет размерность м0,5×с-1. Коэффициент Шези

. (3.13)

Подстановка в уравнение (3.10) значение коэффициента турбулентной диффузии (3.11) и соответствующие преобразования дают

(3.14)

Решение этого уравнения имеет вид:

(3.15)

где q1 и q2 – постоянные интегрирования. Замена в этом уравнении глубины потока относительной глубиной потока

, а также введение константы a1 = С/g = 427 м/0К приводит к уравнению

(3.16)

В качестве константы интегрирования q1 примем придонную температуру потока, а q2 – разность температуры воды в поверхностном слое qn реки и температурой у дна q1, т.е. q2 = qn – q1. Относительную глубину

будем учитывать со знаком «–» для получения прямой температурной стратификации в период весеннего и летнего нагревания водной массы. Такая необходимость связана с выбором начала координат. Относительная глубина
у поверхности, а необходимая для этого коррекция соответствует вынесению знака «–» в показатель степени при экспоненте в уравнении (3.16). В этом случае эпюра температуры воды описывается уравнением:

. (3.17)

Таким образом, распределение температуры воды по глубине потока зависит от глубины потока и коэффициента шерховатости, температуры воды в придонном и в поверхностном слое потока, а также от коэффициента а1.

3.3 Поперечное и продольное распределение температуры воды

Оценим поперечное распределение температуры воды для условий, когда изменение температуры воды по длине потока стационарно и неизменно, течение установившееся и равномерное, поперечные и вертикальные составляющие осредненной скорости равны нулю. Указанные условия означают, что процессы адвекции тепла на локальном участке реки отсутствуют и, следовательно, уравнение теплопроводности (3.8) имеет вид

(3.18)

Аналитическое решение этого уравнения в общем случае отсутствует. Оно появляется при использовании полученного выше теоретического распределения температуры воды по глубине потока. Такой подход (по аналогии с методом плоских сечений при построении поля скоростей на участке реки) можно назвать «1,5D», так как решение производится «одномерными» методами (Великанов, 1954).

Распределение температуры воды в поперечном сечении потока можно рассматривать с двух взаимосвязанных позиций: распределение поверхностной температуры воды по ширине потока и распределение температуры воды по всей площади поперечного сечения. Пусть распределение поверхностной температуры воды не зависит от распределения температуры воды и скорости по глубине потока. В этом случае, уравнение (3.18) приобретает вид:

(3.19)

Решение этого уравнения дает распределение поверхностной температуры воды по ширине потока. Для решения воспользуемся схемой обозначений для прямоугольного сечения русла (рис. 3.2), где В-ширина реки b=B/2 – половина ширины реки, z – расстояние от берега, y – отметка горизонта воды от дна, h – глубина потока. Использование прямоугольной схематизации русла позволяет предположить, что распределение температуры воды в поперечном сечении такой формы при прочих равных условиях симметрично, тепловое влияние обоих берегов – одинаково, влияние поверхностей раздела «вода – воздух» и «вода – ложе» также одинаково по всей ширине потока. В этом случае можно рассматривать распределение температуры воды только для одной, например, правой половины русла (считая распределение температуры в левой половине русла симметричным). В центре потока значения температуры максимально отличаются от прибрежной температуры воды.