Рис. 3.1 Схема к поступлению и удалению тепла на гранях элементарного объема воды
Изменение потоков тепла вследствие физической (молекулярной) теплопроводности учитывается уравнением (Караушев, 1969)
(3.1)где
- тепловой поток по i-му координатному направлению, обусловленный физической теплопроводностью, V – объем воды, – интервал времени. В соответствии с законом Фурье поток теплоты (Вт/м2), обусловленный этим механизмом теплопередачи, пропорционален градиенту температуры по направлению i и коэффициенту физической теплопроводности (Вт/м2 ×0С): . (3.2)Замена
в уравнении (3.1) соотношением (3.2) приводит к выражению:Считая, что температурное поле изотропно (т.е.
) получаем: . (3.4)Поскольку сумма изменений частных потоков тождественно равна изменению теплосодержания (в соответствии с уравнение (2.1)), то
, (3.5)где С – удельная теплоемкость, ρ – плотность воды. Раскрытие полной производной dq/dt преобразует уравнение (3.5) к уравнению теплопроводности (уравнению Фурье-Кирхгофа)
, (3.6)где v, u, w – продольная, поперечная и вертикальная компоненты скорости соответственно. Члены, связанные с ними учитывают вклад процессов адвекции, дисперсии и конвекции в изменение температуры воды. Отношение
называется коэффициентом температуропроводности (м2/с).В водных потоках изменение теплового состояния в основном зависит от турбулентного теплопереноса. Суммарный эффект влияния физической теплопроводности и турбулентного теплопереноса с учетом осреднения всех членов уравнения (3.6) дает (Алексеевский, 2006):
, (3.7)где
– температура; , , , – осредненные, а , – пульсационные продольная, поперечная и вертикальная компоненты скорости течения. Условия переноса тепла в турбулентных потоках характеризует коэффициент турбулентной температуропроводности Он интегрально учитывает роль конвективной, адвективной, дисперсионной, а также турбулентной теплопередачи в суммарном изменении температуры объема воды. Роль физической теплопроводности несущественна по сравнению с турбулентным теплопереносом, поэтому уравнение (3.7) трансформируется к виду (Алексеевский, 2006): , (3.8)в котором использовано условие изотропности температурного поля (
). Более точным является выражение:3.2 Эпюры вертикального распределения температуры воды
Закономерности вертикального изменения температуры воды q в реках изучены недостаточно. Первый способ теоретического описания распределения температуры воды по глубине реки был предложен В.А. Бергом (1962). Теоретические эпюры температуры хорошо согласуются с реальным изменением температуры воды по вертикали. Однако их получение трудоемко и ограничено условиями постановки решаемой задачи. В общем случае формулу для расчета теоретической эпюры температуры можно получить из уравнения (3.9). Для случая установившегося равномерного движения потока (
), отсутствия поперечных составляющих осредненной скорости, неизменных по длине потока x и его ширине z температур: (3.10)Производные в этом уравнении полные, поскольку учитывается изменение q лишь по одному координатному направлению. Согласно А.В. Караушеву (Караушев, 1977), коэффициент турбулентной диффузии
, (3.11)где h – глубина потока, v – скорость течения в данной точке потока, а
M = 0,7Cш+6 (3.12)
при
и M = 48 = const при . Этот параметр, как и коэффициент Шези, имеет размерность м0,5×с-1. Коэффициент Шези . (3.13)Подстановка в уравнение (3.10) значение коэффициента турбулентной диффузии (3.11) и соответствующие преобразования дают
(3.14)Решение этого уравнения имеет вид:
(3.15)где q1 и q2 – постоянные интегрирования. Замена в этом уравнении глубины потока относительной глубиной потока
, а также введение константы a1 = С/g = 427 м/0К приводит к уравнению (3.16)В качестве константы интегрирования q1 примем придонную температуру потока, а q2 – разность температуры воды в поверхностном слое qn реки и температурой у дна q1, т.е. q2 = qn – q1. Относительную глубину
будем учитывать со знаком «–» для получения прямой температурной стратификации в период весеннего и летнего нагревания водной массы. Такая необходимость связана с выбором начала координат. Относительная глубина у поверхности, а необходимая для этого коррекция соответствует вынесению знака «–» в показатель степени при экспоненте в уравнении (3.16). В этом случае эпюра температуры воды описывается уравнением: . (3.17)Таким образом, распределение температуры воды по глубине потока зависит от глубины потока и коэффициента шерховатости, температуры воды в придонном и в поверхностном слое потока, а также от коэффициента а1.
3.3 Поперечное и продольное распределение температуры воды
Оценим поперечное распределение температуры воды для условий, когда изменение температуры воды по длине потока стационарно и неизменно, течение установившееся и равномерное, поперечные и вертикальные составляющие осредненной скорости равны нулю. Указанные условия означают, что процессы адвекции тепла на локальном участке реки отсутствуют и, следовательно, уравнение теплопроводности (3.8) имеет вид
(3.18)Аналитическое решение этого уравнения в общем случае отсутствует. Оно появляется при использовании полученного выше теоретического распределения температуры воды по глубине потока. Такой подход (по аналогии с методом плоских сечений при построении поля скоростей на участке реки) можно назвать «1,5D», так как решение производится «одномерными» методами (Великанов, 1954).
Распределение температуры воды в поперечном сечении потока можно рассматривать с двух взаимосвязанных позиций: распределение поверхностной температуры воды по ширине потока и распределение температуры воды по всей площади поперечного сечения. Пусть распределение поверхностной температуры воды не зависит от распределения температуры воды и скорости по глубине потока. В этом случае, уравнение (3.18) приобретает вид:
(3.19)Решение этого уравнения дает распределение поверхностной температуры воды по ширине потока. Для решения воспользуемся схемой обозначений для прямоугольного сечения русла (рис. 3.2), где В-ширина реки b=B/2 – половина ширины реки, z – расстояние от берега, y – отметка горизонта воды от дна, h – глубина потока. Использование прямоугольной схематизации русла позволяет предположить, что распределение температуры воды в поперечном сечении такой формы при прочих равных условиях симметрично, тепловое влияние обоих берегов – одинаково, влияние поверхностей раздела «вода – воздух» и «вода – ложе» также одинаково по всей ширине потока. В этом случае можно рассматривать распределение температуры воды только для одной, например, правой половины русла (считая распределение температуры в левой половине русла симметричным). В центре потока значения температуры максимально отличаются от прибрежной температуры воды.