Более древнюю и продолжительную часть геологической истории Ч. Шухерт назвал криптозоем, или временем со скрытым развитием жизни. Довольно часто еееще называют докембрием. Это название сохранилось с середины XIX в., когда было установлено абсолютное большинство геологических периодов. Все более древние отложения, залегающие под кембрийскими толщами, стали датироваться докембрием. В настоящее время вместо криптозоя выделяют два эона: архейский и протерозойский.
Широкая распространенность, богатство ископаемыми органическими остатками и относительная доступность фанерозойских отложений предопределили их более лучшую изученность. Английский геолог Дж. Филлипс в 1841 г. в составе фанерозоя выделил три эры: палеозойскую — эру древней жизни; мезозойскую — эру средней жизни и кайнозойскую — эру новой жизни. В палеозое господствовали морские беспозвоночные, рыбы, земноводные и споровые растения, в мезозое — пресмыкающиеся и голосеменные растения, а в кайнозое — млекопитающие и покрытосеменные растения.
Сформированные в течение геологической эры отложения называются эратемами. Более мелкими стратиграфическими единицами являются системы, отделы и ярусы. Имена системам и ярусам были даны преимущественно по названию местностей, где они были установлены и изучены, или по каким-либо характерным признакам. Так, название юрской системы произошло от Юрских гор в Швейцарии, пермской — от г. Перми, кембрийской от древнего названия английской провинции Уэльс, меловой — от широко распространенного писчего мела, каменноугольной — от каменного угля и т. д.
Если стратиграфическая шкала отражает последовательность отложений и их соподчиненность, то геохронологическая — определяет длительность и закономерную последовательность этапов исторического развития Земли. На протяжении последних 100 лет геохронологическую и стратиграфическую шкалы фанерозоя многократно пересматривали.
Однако в геологии важно знать не только относительный возраст горных пород, но и, по возможности, точное время их происхождения. Для определения возраста горных пород применяется несколько различных методов,основанных на явлении радиоактивного распада. В связи с этим возраст пород носит название радиогеохронометрического. Для его определения используют радиоактивные изотопы урана, тория, рубидия, калия, углерода и водорода. Ввиду того что нам известны скорости распада радиоактивного изотопа, легко можно определить возраст минерала, а следовательно, и породы. В настоящее время разработаны и широко применятся различные методы ядерной геохронологии: ураноторий-свинцовый, ураноторий-гелиевый, урано-ксеноновый, калий-аргоновый, рубидий-стронциевый, самарий-ниодимовый, рений-осмиевый и радиоуглеродный. Содержание радиоактивных изотопов в горных породах и минералах определяется в специальных приборах — мacc-спектрометрах.
Благодаря методам ядерной геохронологии, устанавливается возраст магматических и осадочных горных пород, а для метаморфических пород определяется время воздействия на них высоких температур и давления. Изотопный возраст наиболее древних пород земного шара составляет 3,8—4 млрд. лет. Близкий возраст имеют некоторые лунные породы и метеориты.
Трудность изучения архейских и протерозойских отложений предопределила их слабую стратиграфическую и геохронологическую расчлененность. Вот как выглядит в настоящее время пока далекая от совершенства и детальности шкала архея и протерозоя.
В геологии применяется также дополнительный метод возрастного расчленения и сопоставления отложе, ний. Это палеомагнитный метод, основанный на явлении сохранения в толщах горных пород магнитных свойств. Горные породы, содержащие магнитные минералы, обладают ферромагнитными (намагниченными) свойства, ми и под влиянием магнитного поля Земли приобретают естественную остаточную намагниченность. Сейчас доказано, что в течение длительной геологической истории положение магнитных полюсов неоднократно менялось. Установив остаточную намагниченность и ее направленность (т. е. вектор) и сравнивая между собой вектора, можно установить одновозрастность горных пород, что в определенной степени уточняет геохронологическую шкалу.
Основные этапы формирования земной коры
Определение возраста различных изверженных пород позволило не только установить продолжительность геологических периодов, но и выделить наиболее древние горные породы Земли. В настоящее время известно, что документированные следы жизни на Земле возникли свыше 3 млрд. лет, самые древние осадочные породы обладают возрастом немногим более 3,8 млрд. лет, а возраст Земли оценивается в 4,6—5 млрд. лет, хотя некоторые ученые считают эти цифры завышенными.
Установлено, что эпохи интенсивной вулканической деятельности были кратковременными и разделялись длительными эпохами со слабым проявлением магматизма. Эпохи усиленного магматизма характеризовались высокой степенью тектонической активности, т. е. значительными вертикальными и горизонтальными движениями земной коры.
Данные о возрасте изверженных пород дают возможность установить существование сравнительно коротких эпох повышенной магматической и тектонической активности и длительных периодов относительного покоя. Это, в свою очередь, позволяет провести естественную периодизацию истории Земли по степени тектонической и магматической интенсивности. Сводные данные о возрасте изверженных пород, по сути дела, являются календарем основных тектонических событий в истории Земли. На основании исследований главным образом гранитных интрузий уточнен возраст тектоно-магматических циклов (эпох) в истории Земли. Вместе с тем необходимо отметить, что время проявления этих циклов на материках неодинаково и имеются частые отступления от планетарной единовременности этих процессов.
О далеком геологическом прошлом практически полностью отсутствуют фактические данные. Можно только предполагать, что до 3,5 млрд. лет назад существовал очень активный вулканизм с излиянием базальтовых и гипербазитовых лав. Одновременно выделялся значительный объем газов. Это привело к созданию не только земной коры, но и первичной атмосферы.
Возраст тектоно-магматических эпох в истории Земли
Номер эпохи | Тектоно-магматическая эпоха | Время проявлений, млрд. лет |
20 | Альпийская | 0,06 |
19 | Киммерийская | 0,09 |
18 | Герцинская (варисская) | 0,26 |
17 | Каледонская | 0,41 |
16 | Салаирская (позднебайкальская, сардская) | 01,52 |
15 | Катангинская (раннебайкальская, ассинтская, кадомская, железногорская) | 0,05 |
14 | Делийская (дальнеландская) | 0,86 |
13 | 0,93 | |
12 | Гренвильская (сатпурская) | 1,09 |
11 | 1,21 | |
10 | Готская(медвежьеозерская, мазатиальская, кибарская, эльсонская) | 1,36 |
9 | 1,49 | |
8 | Карельская (гудзонская, свекофенская, буларенинская, лаксфордская) | 1,67 |
7 | 1,83 | |
6 | Балтийская (эбурнейская, пенокийская) | 1,98 |
.5 | Раннекарельская | 2,23 |
4 | Альгонкская | 2,44 |
3 | Кеноранская (беломорская, лаврентьевская, родезийская, шамваянская) | 2,70 |
2 | Кольская (трансваальская, саамская) | 3,06 |
1 | Белозерская | 3,5 |
В течение белозерской тектоно-магматической эпохи в начале архейского зона и Кольской эпохи в середине архея протекали процессы гранитизации и возникали первые осадочные бассейны. Для этого времени известны песчаные и глинистые (правда, подвергшиеся сильному метаморфизму) толщи, карбонатные породы и даже продукты их преобразования.
В кеноранскую тектоно-магматическую эпоху в конце архейского зона были сформированы ядра будущих крупнейших устойчивых геоструктурных элементов Земли — ядра континентальных платформ. В последующие времена ядра платформ продолжали нарастать.
В течение кеноранской, альгонкской, раннекарельской, балтийской, буларенинской и карельской тектономагматических эпох сформировались фундаменты всех известных древних континентальных платформ: Восточно-Европейской, Сибирской, Китайской, Таримской, Индостанской, Африкано-Аравийской, Северо-Американ-ской, Южно-Американской и Восточно-Австралийской, На протяжении почти 1 млрд. лет (от 2,7 до 1,67 млрд. лет назад) происходило формирование первичного гранитогнейсового слоя земной коры, а наличие карбонатных осадочных пород способствовало образованию щелочных интрузий. Огромные плутоны гранитоидов площадью свыше тысячи квадратных километров в окружении древнейших осадочных пород зафиксировали в пределах континентальных платформ устойчивые в последующее время участки коры, называемые щитами Примерами являются Балтийский, Украинский, Алданский, Канадский, Гвианский, Бразильский, Аравийский щиты.
Исходя из аналогичности и одновременности образования всех известных древнейших платформ, можно предполагать, что в протерозое существовал огромный единый континент Мегагея (или Большая Земля), окруженный единым Мировым океаном.
Начиная с 1,67 млрд. лет назад древние платформы особенно щиты, становятся устойчивыми во времени и пространстве структурными элементами земной коры. Однако в пределах платформ в дальнейшем возникли участки плавного и сравнительно небольшого прогибания (синеклизы), происходило раскалывание коры вдоль систем глубинных разломов консолидированных древних подвижных поясов. В этом случае возникали крупные протяженные впадины с высокой подвижностью — авлакогены. Такими, в частности, являются Катангский авлакоген на Африканской платформе или Днепровско-Донецкий на Восточно-Европейской платформе.
На протяжении последующих тектономагматических циклов платформы или продолжали наращиваться за счет подвижных поясов, образующихся на их периферии или раскалывались на части и впоследствии испытывали разнонаправленные перемещения с различной скоростью. В последний миллиард лет геологической истории наблюдалось постепенное угасание силы магматизма.