Sп=Sтв * σтв (1-Кп) [м-1].
ГИДРОФИЛЬНЫЕ И ГИДРОФОБНЫЕ ПОВЕРХНОСТИ
Реальные коллекторы нефти и газа в пластовых условиях нередко бывают частично гидрофобными. Это значит, что часть поверхности пор водой не смачивается; в пределах этих «островов» отсутствует пленка воды», а нефть или газ непосредственно граничат с поверхностью твердой фазы.
Избирательная смачиваемость поверхности твердой фазы водой определяется величиной угла смачивания θ на границе воды и другой подвижной фазы в капилляре (воздух, газ, нефть).
При θ = 0, поверхность считается полностью гидрофильной; при 0<θ≤90° поверхность преимущественно гидрофильна; при: 90°<θ≤1800—преимущественно гидрофобна; при θ=180°— полностью гидрофобна. Причины частичной или полной гидрофобности поверхности могут быть различными: специфические свойства вещества твердой фазы, состав и физические свойства пластовой воды, нефти и газа.
Преимущественно гидрофобны твердые битумы и ископаемые угли. Глины и агрегаты глинистых минералов в породах-коллекторах (глинистый цемент), как правило, гидрофильны, если не считать глинистых нефтематеринских отложений (например, породы баженовской свиты. Зерна кварца и полевых шпатов в песчаниках и алевролитах, кальцита и доломита в карбонатных коллекторах имеют различную избирательную смачиваемость в зависимости от свойств пластовых флюидов. В нефтеносном коллекторе гидрофобизация поверхности происходит при наличии полярных молекул поверхностно-активных углеводородов — нефтеновых кислот, асфальтенов и т.д., которые в пределах отдельных участков поверхности прорывают пленку воды и занимают активные центры поверхности. В известняках возможна кроме обычной адсорбции молекул углеводородов их хемосорбция, сопровождаемая образованием на поверхности пор новых соединений, например нафтенатов кальция.
Гидрофобизация породы-коллектора оказывает существенное влияние на величину подсчетных параметров и эффективность разработки месторождения, поэтому необходимы учет степени гидрофобизации и количественная ее оценка.
НЕФТЕ- И ГАЗОНАСЫЩЕННОСТЬ ПОРОД
Породы-коллекторы в условиях естественного залегания содержат воду, нефть и газ. В водоносных коллекторах поровое пространство обычно полностью насыщено водой. Однако в отдельных геологических объектах наблюдается присутствие остаточной нефти, которое является следствием миграции нефти в расположенную поблизости ловушку, где сформировалась нефтяная залежь. В нефтеносном гидрофильном коллекторе поры насыщены нефтью и водой. Нефть занимает обычно межзерновые поры и каверны размером более 1 мкм и трещины раскрытостью больше 1 мкм; иногда возможно присутствие нефти в более мелких порах, кавернах и трещинах меньшей раскрытости. Вся поверхность минерального скелета покрыта пленкой воды. Вода заполняет оставшуюся часть объема пор, не занятую нефтью. Содержание нефти и воды в объеме пор характеризуют коэффициентами нефте- и водонасыщения—Кн, Кв, сумма которых равна 1. Если коллектор находится в зоне предельного насыщения ловушки нефтью, коэффициент нефтенасыщения соответствует выражению:
Кнпред = 1-Кв о.
В частично гидрофобном коллекторе часть поверхности твердой фазы занимают молекулы поверхностно-активных компонентов нефти, водная пленка на поверхности в этих участках отсутствует. Коэффициент нефтенасыщения частично гидрофобного коллектора при прочих равных условиях выше коэффициента нефтенасыщения того же коллектора при полной его гидрофильности.
Коэффициент нефтенасыщения крупных каверн и трещин большой раскрытости в зоне предельного нефтенасыщения принимают равным единице.
Газоносный коллектор также может быть частично гидрофобным. Наиболее вероятна частичная гидрофобность газоносного коллектора в следующих случаях: а) коллектор с высокими проницаемостью и пористостью и очень высоким значением г>0,95; б) коллектор содержит битум на поверхности твердой фазы.
При подсчете запасов нефти и газа для определения параметров Кн и Кг широко применяют методы ГИС, по данным которых определяют вначале Кв, а затем рассчитывают Кн или Кг.
В коллекторах с трехфазным насыщением, содержащих в порах нефть, газ и воду, находят раздельно коэффициенты нефте- и газонасыщения, учитывая, что их сумма равна единице.
ВЫДЕЛЕНИЕ КОЛЛЕКТОРОВ
Задача выделения коллекторов является составной частью задачи литологического расчленения, однако ввиду практической важности ее рассматривают как самостоятельную. Петрофизическая основа решения задачи—граничное значение Кп, Сгл и других параметров породы, характеризующее границу коллектор—неколлектор. Зная граничное значение Кпгр или Сглгр, проводят на диаграмме этого параметра, полученной для данного разреза способом кросс-плотов или каким-либо другим, линию, параллельную оси глубин, соответствующую Кпгр илиСглгр, после чего характеризуют его как коллектор или неколлектор.
Оценка характера насыщения коллектора и выделение продуктивного коллектора выполняются путем сравнения удельного сопротивления ρп пласта-коллектора с его удельным сопротивлением ρвп при полном насыщении пластовой водой. Если ρп < ρвп —коллектор водоносный; если ρп > ρвп пласт содержит нефть или газ, но еще неизвестно, является ли он промышленно продуктивным. Пласт считают продуктивным при условии ρп > ρпкр н, где ρпкр н —критическое удельное сопротивление рассматриваемого класса коллектора. Величину ρпкр н и соответствующее значение Рнкр н устанавливают с помощью зависимости Рн= f(Кв),в соответствии с величиной Квкр н, определенной путем анализа кривых относительной фазовой проницаемости для системы нефть—вода или газ—вода в зависимости от того, чем насыщен коллектор.
Глава 2. Краткая характеристика геологического разреза и пласта Ю1
Залежь нефти на Крапивинском месторождении приурочена к платсу Ю1 васюганской свиты. Основные запасы связаны с верхнеюрским пластомЮ13-4 (подугольная часть верхневасюганской подсвиты). В пределах месторождения пробурено 28 поисковых и разведочных скважин, 17 из которых дали притоки нефти. При изучении параметров пористости, эффективной мощности и дебита мы можем наблюдать заметные колебания. Так, дебит скв. 201 (132,4 м3/сут) при незначительном превышении средней пористости коллекторов (17 %) по сравнению со скв. 202 (16 %) и меньшей эффективной толщине (10,4 против 13,8 м) в 20 раз превосходит дебит последней (7 м3/сут); дебит скв. 190 (60,4 м3/сут), несмотря на одинаковую пористость (16 %) и меньшую эффективную толщину (9,8 м) по сравнению со скв. 206 (12,2 м) и скв. 195 (14,4 м), значительно превышает дебиты указанных скважин (7,7 и 11,7 м3/сут). Оказалось, что колебания дебитов скважин при установленном несоответствии с емкостными параметрами продуктивной пачки вполне отвечают изменчивости проницаемости коллекторов пласта Ю13. Так, максимальный дебит в скв. 208 (316 м3/сут) обусловлен очень высокими значениями проницаемости пласта Ю13, достигающими 0,6296-2,2848 мкм2 (см. скв.208 на рис.1). Несколько меньшие дебиты в скв. 201 (132,4 м3/сут) и скв. 203 (59,5 м3/сут) соответствуют некоторому уменьшению проницаемости в скв. 201 (до 0,1000-0,4037 мкм2) и более значительному в скв. 203 (до 0,010-0,063 мкм2). Небольшие дебиты в скв. 206 (7,3 м3/сут нефти и 0,4 м3/сут воды) и скв. 195(11,7 м3/сут) отвечают еще более низкому значению проницаемости (до 0,001-0,050 мкм2). Таким образом, очевидно, что именно изменчивость проницаемости пород-коллекторов пласта Ю13 определяет столь широкий диапазон вариаций дебитов нефти и сложный характер распределения продуктивности по скважинам. Именно проницаемость обеспечивает аномально высокие дебиты (60-316 м3/сут) ряда скважин, отличающие Крапивинское месторождение от других, причем не только Каймысовского свода, но и всей Западной Сибири.
Рис.1. Геофизическая, петрофизическая и литологическая характеристики песчаных пород-коллекторов разных типов
1-10 - литологические типы пород: 1-7 – песчаники;1 - крупно-среднезернистые; 2- среднезернистые; 3- средне-мелкозернистые; 4-средне-мелкозернистые глинисто-алевритистые и алевритовые; 5- мелкозернистые глинисто-алевритистые; 6- мелкозернистые алевритовые и глинисто-алевритовые; 7- алевритисто-глинистые; 8,9 - алевролиты (8 - песчаные, 9 - песчано-глинистые); 10- аргиллиты; 11- угли; 12-17 - гранулометрические фракции: 12-14 - песчаные (12 - крупнозернистые, 13- среднезернистые, 14- мелкозернистые); 15,16 – алевритовые (15 - крупнозернистые, 16- мелкозернистые); 17- глинистые; 18-21 - петрографический состав обломочной части: 18- кварц; 19- полевые шпаты; 20 - обломки горных пород; 21 – слюда.
Стратиграфическое расчленение разреза юго-восточной части Каймысовского свода (район Крапивинского нефтяного месторождения) осуществлено по данным глубоких скважин с использованием ископаемых остатков фауны и флоры, стандартного каротажа (ПС — поляризации собственной, КС — кажущегося сопротивления) и региональных корреляционных схем.
Объектом изучения является горизонт Ю1 васюганской свиты келловей-оксфордского ярусов верхней юры (J3к-оvs).
Свита названа по р. Васюган на Западно-Сибирской равнине. Выделена В. Я. Шерихорой в 1961г. и входит в полуденную серию. Мощность свиты от 40 до 110 м. Свита содержит аммониты рода Quenstedticeras, фораминиферы видов Recurvoides scherkalyensis Lev., Recurvoides singularis Lutova, Ammobaculites tobolskensis Levina, Globulina alexandrae Dain; отпечатки мелких раковин брахиопод; отпечатки двустворок и белемнитов; пыльцу Classopollis, двухмешковую пыльцу хвойных растений, пыльцу Eucommiidites, Caytonia (Vitreispotes), споры тропических папоротников Motomisporifes phlebopteroites, Dipteridaceae, редкие остатки Yleichenia и др. (по материалам О. Н. Костеши). Отложения васюганской свиты согласно залегают на отложениях тюменской и вскрыты всеми скважинами описываемой территории. Свита четко выделяется в разрезах изучаемых скважин, хорошо прослеживается по латерали и подразделяется на две подсвиты, сложенные разнофациальными (преимущественно морскими) отложениями, сформировавшимися в процессе двух трансгрессий - келловейской (нижневасюганская подсвита), позднеоксфордской части верхнеюрско-валанжинской (верхневасюганская подсвита) — и кратковременного периода континентального режима осадконакопления между ними.