Рівняння балансу питомої кінетичної енергії (К) і масової частки водяної пари (q) в ізобаричній системі координат, які використовуються в аналізі, мають вигляд:
Просторові похідні в рівняннях балансу апроксимірувались за схемою Шумана, а інтегрування проводиться за формулою трапецій.
Результати аналізу енергетики і вологовмісту пірнаючих циклонів, що знаходились в фазі максимального розвитку:
досліджувались три пірнаючих циклони, відповідно типовим траєкторіям:
I тип - 16-19 грудня 1985 р.,
II - 13-16 листопада 1988 р.,
III - 24-27 лютого 1980 р.
Циклони, що розглядались, на момент свого максимального розвитку були розташовані: циклон I типу (18.12.85 р) - дещо на північ від Азовського моря;
циклон II типу (15.11.88 р) - над північними районами України;
циклон III типу (25.02.80 р) - над Середнім Уралом.
Незважаючи на достатньо широку широтну смугу розташування циклонів, макроциркуляційні умови для усіх випадків були схожі. Так, інтенсивність висотної фронтальної зони на широті розташування циклонів в кожному випадку складала 36 дам/1000 км, а горизонтальні відстані між приземними центрами циклонів і відповідними їм центрами на рівні АТ-500 гПа складали всього 3-4 градуси меридіану, тобто циклони в розглядаємі дати представляли собою вихори з квазівертикальними вісями. Вологістно-енергетичні характеристики осереднювались за площею S, яка свідомо перевищувала розміри циклону, включаючи до себе вплив фону; за площею S1, відповідній центральній частині вихора, а також за складаючими його частинами - передній Sп і тиловій Sт. Області Sп і Sт визначалися в залежності від напрямку пересування циклонів і почасти включали до себе вплив фону. Шар атмосфери 1000-100 гПа був розбитий на 5 збільшених шарів, які характеризують процеси різних шарів тропосфери: 1000-850, 850-700, 700-500, 500-300 і 300-100 гПа. Додатково розраховувались інтегральні характеристики балансів К і q в шарах 1000-700, 1000-300 і 1000-100 гПа.
В результаті аналізу складових балансів кінетичної енергії і вологовмісту встановлено, що:
найбільші інтегральні запаси кінетичної енергії мав циклон I типу (11.88⋅⋅10-5 Дж/м2), а найменші - циклон II типу (6.47⋅10-5 Дж/м2). Максимум енерговмісту відмічався в тиловій частині циклонів I і III типів і передній - в циклоні II типу;
приплив кінетичної енергії за рахунок дивергенції горизонтального потоку (К2>0) відбувався в основному крізь західну і північну межі вихорів з перевагою того чи іншого напрямку в залежності від типу циклона, а відтік - переважно крізь східну межу в циклонах I і II типів, і крізь південну - в циклоні III типу;
для усіх трьох типів пірнаючих циклонів характерним є приплив кінетичної енергії за рахунок дивергенції вертикального потоку (К3>0) в середній тропосфері (шар 700-500 гПа) із вище - і нижчерозташованих шарів; максимальний відтік спостерігався в верхній тропосфері. Внесок цього фактору на порядок менше горизонтального переносу кінетичної енергії;
в усіх циклонах спостерігався перехід потенціальної енергії в кінетичну (К4>0) в нижній тропосфері; зворотній процес відбувався в шарі 700-300 гПа в циклонах I і II типів. В циклоні III типу генерація кінетичної енергії відмічалася в усій тропосфері з максимумом в шарі 500-300 гПа (33.9 Вт/м2). При цьому основні перетворення енергії в усіх циклонах відбувалися в їх тилових частинах;
основний внесок в формування пошарових змін К4 дає зміна вітру з висотою (δFсдв) з максимумом впливу в області верхньотропосферної струмінної течії (500-300 гПа). Термічний фактор (δFадв) переважатиме в верхніх шарах (300-100 гПа), однак інтегральне значення його в декілька разів менше, ніж зсувного;
знак генерації кінетичної енергії К4 добре узгоджується з еволюцією циклонічних вихорів. Так, приплив енергії в усій товщі тропосфери за рахунок цього фактору в циклоні III типу призводив до значного його розвитку з висотою (до рівня 200 гПа) в послідуючий після фази максимального розвитку період. І, навпаки, відтік кінетичної енергії за рахунок її перетворення в потенціальну в середній і верхній тропосфері передував заповненню циклонів I і II типів в цьому шарі атмосфери;
основні запаси водяної пари q були зосереджені в передніх частинах циклонів в нижньому 3-ох кілометровому шарі (біля 75% інтегрального вологовмісту). Найбільше значення q відмічалося в циклоні II типу - 11.14 кг/м2, найменше - в циклоні III типу - 6.94 кг/м2;
надходження вологи в циклонах відбувалося в основному за рахунок горизонтального переносу (q2), який призводив до збільшення вологовмісту в центральних частинах циклонів I і III типів, і зменшення - в циклоні II типу. При цьому приплив вологи в циклоні I типу відбувався переважно крізь західну межу, в циклоні II типу - крізь південну, і в циклоні III типу - крізь північну;
перерозподіл водяної пари вертикальними токами (q3) призвів до його накопичення в середній тропосфері в циклонах II і III типів, і в верхній - в циклоні I типу.
Таким чином, пірнаючі циклони різних типів в фазі максимального розвитку відрізняються перш за усе за такими характеристиками як: K2, q2, K4, а величини K3 і q3 можуть бути використані як додаткові ідентифікатори при діагностиці типу циклона.
Вологістно-енергетичні характеристики розглядалися тільки в тому шарі атмосфери, в якому вихор був поширений в конкретний момент часу, що дало змогу оцінити зміну інтенсивності енергетичних перетворень в залежності від фази розвитку циклонів.
Незважаючи на однакову тривалість існування розглядаємих циклонів (4 доби), вони суттєво відрізняються за характером еволюції.
Так, циклон I типу пройшов чотири фази розвитку фронтального циклона - від фази утворення (хвилі) до фази заповнення, причому кожний період тривав біля доби. Еволюція цього віхора не призвела до розвитку висотного циклона.
Циклон II типу представляв собою невеликий частковий вихор в улоговині поширеної депресії над Баренцевим морем. Процес "пірнання" здійснився в результаті регенерації цього часткового циклону на холодному фронті. Характерною особливістю цього циклона став той факт, що він первісно був розвинений до рівня АТ-300 гПа.
Циклон III типу відрізнявся від двох попередніх швидким розвитком на протязі доби від фази утворення хвилі до фази максимального розвитку. При цьому спостерігався розвиток цього циклону до рівня АТ-300 гПа, а в період заповнювання, який тривав дві доби, - до рівня АТ-200 гПа.
Таким чином, вологістно-енергетичні характеристики в пірнаючих циклонах дають можливість кількісного опису їх еволюції, включаючи і процес регенерації.
Основні виводи стосовно балансу кінетичної енергії зводяться до такого:
інтегральний вміст кінетичної енергії в пірнаючих циклонах по мірі їх розвитку з висотою в 2-3 рази зростає від моменту виникнення до початку заповнення. В фазах виникнення і заповнення основні запаси К зосереджені в передніх частинах циклонів, а в фазі максимального розвитку - переважно в тилових;
приплив кінетичної енергії за рахунок тривимірної дивергенції потоку (К2+К3) переважав в процесі еволюції циклонів II і III типів, а в циклоні I типу спостерігався постійний відтік енергії за рахунок цього фактору. Найбільша інтенсивність адвективних процесів при цьому спостерігалася в тиловій частині в період розвитку, при заповненні - в передніх частинах циклонів;
генерація кінетичної енергії К4 додатна в усіх трьох циклонах в фазах утворення-максимальний розвиток, а в період заповнення значно слабішає в циклонах I і II типів і змінює знак на протилежний в циклоні III типу;
порівняння адвективного припливу кінетичної енергії (К2+К3) і її генерації К4 показало, що в циклонах I і II типів ці фактори одного порядку практично в усі фази розвитку, а в циклоні III типу перехід потенціальної енергії в кінетичну переважав в процесі його еволюції;
регенерація циклона II типу добре виражена в часовому ході інтегрального вмісту кінетичної енергії: максимальне значення К (10.19⋅10-5 Дж/м2) спостерігалося перед регенерацією, і значне її зменшення (майже в 3 рази) - в наступний строк. Подальший розвиток циклону супроводжувався збільшенням кінетичної енергії, однак її максимальне значення було все ж таки менше, ніж в строки, попередні регенерації. Процес регенерації супроводжувався інтенсивним горизонтальним припливом кінетичної енергії (К2>0) в область вихора. Просторова термодинамічна неоднорідність циклона під час входження холодного фронту достатньо чітко відображається в величинах генерації кінетичної енергії: в передній і тиловій частинах відмічалися практично рівні за модулем, але протилежні за знаком величини К4 (41.4 і - 46.4 Вт/м2 відповідно);
швидкий розвиток циклона III типу з висотою відбувався на фоні інтенсивної генерації кінетичної енергії в період утворення-максимальний розвиток, при цьому основний внесок в інтегральне значення К4 належав тиловій частині (137.9 Вт/м2);
аналіз повної зміни кінетичної енергії (К1+К2+К3) показав, що циклон I типу в цілому був осередком накопичення кінетичної енергії, а циклони II і III типів - осередками витоку.
При аналізі складових рівняння балансу водяної пари в процесі еволюції пірнаючих циклонів зроблено такі висновки:
для всіх типів пірнаючих циклонів характерне зменшення вологовмісту під час їх розвитку. При цьому основні запаси вологи зосереджені: в передній частині - в циклоні II типу, в тиловій - в циклоні III типу. В циклоні I типу відмічалась зміна розташування максимума q від однієї фази до іншої, обумовлена параболічною траєкторією пересування цього циклону;