Мутность речных вод значительно меняется по живому сечению потока, по его длине и во времени. Распределение мутности по живому сечению носит очень сложный и нередко в значительной мере беспорядочный характер. Как правило, мутность возрастает от поверхности ко дну. Это увеличение мутности происходит главным образом за счет крупных фракций наносов, увеличивающихся ко дну. Мелкие же фракции (менее 0,01 мм) обычно распределяются довольно равномерно по глубине потока. По этой причине, чем больше в составе наносов крупных фракций, тем неравномернее они распределены по глубине. С увеличением турбулентности потока распределение взвешенных наносов по вертикали становится более равномерным. Сказанное справедливо только как самая общая схема. В реальной же действительности дело обстоит много сложнее, так как эта схема нарушается под влиянием возникающих водоворотов и циркуляционных течений.
Еще более сложный характер носит распределение наносов по ширине реки. Здесь вообще трудно подметить сколько-нибудь отчетливо выраженную закономерность. Распределение наносов по ширине потока сильно меняется в зависимости от направления течения, местных размывов русла и берегов, впадения притоков, несущих большее или меньшее количество наносов, чем главная река. Наблюдения показали, что в ряде случаев наносы проносятся в потоке в виде отдельных движущихся скоплений — «жил».
Годовой сток взвешенных наносов рек изменяется в широких пределах. Отдельные реки выносят в конечные водоемы исключительно большое количество взвешенных наносов. Так, например, годовой сток взвешенных наносов Амударьи составляет в среднем 130 млн. т. Повышенным стоком взвешенных наносов отличаются реки бассейна Каспийского моря, в особенности Волга, сток наносов которой у с. Поляна Фрунзе до постройки Куйбышевского водохранилища составлял в среднем 21 млн. т. Значительно меньше взвешенных наносов выносят реки северной части Русской равнины. Годовой сток взвешенных наносов Печоры, несмотря на большую водоносность этой реки, составляет 6,5 млн. т, а Северной Двины еще меньше — 4,3 млн. т. Сравнительно малым стоком взвешенных наносов характеризуются реки бассейна Балтийского моря. Сток взвешенных наносов самой многоводной из них — Невы — составляет всего лишь 0,82 млн. т. В бассейне Черного моря наибольшее количество взвешенных наносов проносит р. Риони — 6,9 млн. т/год. Огромная водоносность Оби и Енисея является причиной относительно высокого стока наносов этих рек, хотя мутность их вод невелика. Так, годовой сток взвешенных наносов Оби 16 млн. т, Енисея 13 млн. т.
Под влиянием водохранилищ, особенно каскадов, аккумулирующих наносы, твердый сток рек уменьшается. Так, по исследованиям М. И. Львовича, твердый сток Волги после создания каскада водохранилищ снизился до 8-9 млн. т в год, т. е. приблизительно в 2,5-3 раза, а твердый сток Дона до 2,8 млн. т, т. е. в 2 раза.
Из всех рек земного шара наибольшим стоком взвешенных наносов отличается Амазонка — около 2,4-3 млрд. т/год.
Основная масса наносов проносится реками в период концентрации стока воды: на реках восточноевропейского типа — во время весеннего половодья, на реках дальневосточного и тянь-шаньского типа — в теплое время года, на реках с паводочным режимом — в периоды прохождения наиболее интенсивных паводков.
По длине реки меняются и расход наносов, и мутность, и распределение наносов по фракциям. Обычно сток наносов возрастает по длине рек, но бывают случаи, когда эта общая закономерность нарушается, и сток наносов уменьшается вниз по течению (Аму-дарья). Часть наносов таких рек откладывается постепенно в их поймах, протоках и дельтах.
Мутность больших рек изменяется по их длине довольно своеобразно. Мутность рек, текущих в направлении с севера на юг (реки Русской равнины), обычно увеличивается вниз по течению, что связано с более быстрым нарастанием в этом же направлении интенсивности эрозионных процессов по сравнению с увеличением водности рек. Напротив, для рек, текущих с юга на север (Обь, Енисей, Лена), обогащение материалами смыва происходит значительно медленнее вниз по течению, чем увеличение их водности, в связи, с чем мутность таких рек вниз по течению уменьшается. Так, например, средняя годовая мутность Оби у Новосибирска 245 г/м3, у Калпашова она снижается до 113 г/м3, у Салехарда падает до 34 г/м3.
Внутригодовой режим мутности и расходов взвешенных наносов зависит от поступающих в речную сеть материалов эрозии, характера размывающей деятельности потока и его водного режима. На реках с весенним половодьем материал смыва с поверхности бассейна наиболее интенсивно поступает в речную сеть в первой половине этой фазы водного режима. В составе наносов в этот период преобладают мелкие фракции (<0,005 мм). К некоторому моменту времени запасы продуктов выветривания в бассейне значительно уменьшаются и интенсивность смыва, а, следовательно, и поступление наносов в речную сеть ослабевают, водность же рек продолжает возрастать. К моменту прохождения пика половодья резко повышается крупность наносов, что является результатом выноса материалов эрозии из оврагов и балок и усиления размыва русла реки. Однако размывающая деятельность речных потоков не настолько велика, чтобы компенсировать уменьшение поступления наносов в речную сеть с поверхности бассейна. Вот почему на больших реках с весенним половодьем обычно максимумы мутности и расхода взвешенных наносов наступают раньше максимума расходов воды. На малых реках время наступления этих максимумов совпадает, а в отдельных случаях наибольшая мутность наблюдается и после прохождения максимального расхода воды. Последнее явление, подмеченное наблюдениями ГГИ на малых водотоках бассейнов рек Сарысу, Нуры, Тургая и др., объясняется интенсивными русловыми деформациями. Роль русловой эрозии оказывается больше, чем роль смыва со склонов, особенно в маловодные годы и в годы с замедленным оттаиванием почвы.
На реках, питающихся талыми водами ледников, максимумы мутности и расходов воды обычно совпадают.
Совпадение максимумов мутности и расходов воды во время паводков характерно для горных рек с преобладанием дождевого питания. Это происходит вследствие относительно быстрого формирования паводка и концентрированного поступления в русло реки как воды, так и продуктов смыва с водосбора. Обычно в первый паводок после засушливого периода мутность воды при одних и тех же расходах больше, чем при последующих. Возможны также случаи повышения мутности на подъеме, спаде паводка и даже при относительно устойчивых расходах воды главной реки вследствие несовпадения во времени формирования паводков на притоках (реки Кура, Риони, Бзыбь).
Малая мутность на всех реках наблюдается в период питания их грунтовыми водами.
В ходе подготовки данного реферата была проанализирована учебная и справочная литература, а также информация из Интернета по заданной тематике. Рассмотрены понятия влекомых и взвешенных наносов, описаны принципы формирования и внутригодовой режим.
Речные наносы – это совокупность твердых минеральных частиц, переносимая потоком и формирующая русловые и пойменные отложения.
Основные пути формирования наносов – это продукты выветривания, денудации и эрозии горных пород и почв. Водная эрозия бывает двух видов: склоновая и русловая.
Склоновая эрозия — размыв и смыв почв и горных пород снеговыми и дождевыми водами, стекающими по склону.
Русловая эрозия — размыв водными потоками, протекающими в руслах, коренных пород дна и берегов русла и склонов долин.
Рассматривают два вида наносов:
· Влекомые – наносы, перемещающиеся в придонном слое потока.
· Взвешанные – твердый частицы наноса находятся в взвешанном состоянии.
В равнинных реках преобладают взвешанные наносы, в горных – влекомые.
Внутригодовой режим речных наносов, мутности зависит от поступающих в речную сеть материалов эрозии, характера размывающей деятельности потока и его водного режима, от источника питания реки, от природных особенностей года.
При написании этой работы мною были получены и расширены знания по теме «Речные наносы», «Источники питания», «Водная эрозия».
1. Л.К. Давыдов, АА. Дмитриева, Н.Г. Конкина. Общая гидрология. –Л.: Гидрометеоиздат, 1973. – 463 с.
2. Новиков Ю.В., Сайфутдинов М.М. Вода и жизнь на Земле. – М.: Наука, 1981. – 184 с.
3. Киссин И.Г. Вода под землёй. – М.: Наука, 1976. – 224 с.
4. Бондарев В.П. Геология. Курс лекций: Учебное пособие для студентов учреждений среднего профессионального образования. – М.: Форум: Инфра М., 2002. – 224 с.
5. Горошков И.Ф. Гидрологические расчёты. – Л.: Гидрометеоиздат, 1979. – 432 с.
6. Черданцев В.А., Пивон Ю.И. Методические указания по дисциплине: «Гидрология». – Новосибирск: НГАЭиУ, 2004, 112 с.