суммарные затраты производства СΣ можно представить в виде:
СΣ = I*H/2 + F*n
+ F*γ /Q , (7)откуда
Q* =
(8)Пример.
Если предположить, что в рассмотренном нами магазине существует производственный процесс, при котором на станке производится партия бумажных пакетиков в количестве 10 пакетиков в день. По оценкам специалистов стоимость производства одного пакетика равна 2,5 руб., издержки хранения оцениваются как 20 % цены изделия, годовые затраты на подготовку технологического процесса их производства составляют 500 руб. Необходимо определить оптимальный размер партии пакетиков и частоту запуска производства этих партий.
Решение.
В данном случае плановый период равен 1 году. Стоимость подготовки производственного процесса аналогична издержкам на размещение заказа у сторонних поставщиков F = 500 руб. Интенсивность потребления γ = 500 пакетов/год, интенсивность производства λ = 3000 шт./год, I = i*C = 0.2*2.5 = 0.5 руб./год за пакетик.
= = 1095 пакетиков.
В год таких партий потребуется 500/1095 = 0,46 партии, т. е. запуск производства необходимо осуществлять приблизительно 1 раз в 2 года. При этом время работы станка составит 1095/10 = 109,5 дней, а суммарные годовые затраты по управлению запасами составляют по ф-ле (7):
СΣ
+ = 456,44 руб.1.4. Оптимизация производственных запасов
с учетом страхового запаса
Предыдущие рассуждения основывались на допущении, что возобновление производственных запасов происходит лишь при их исчерпании до нуля. Разумеется, в реальной экономической жизни предприятия чаще всего не допускают подобной ситуации. В этой связи существует понятие точки перезаказа (уровня возобновления заказа), которую в условиях определенности и ритмичности функционирования хозяйствующего субъекта определяют как произведение количества дней, необходимых для исполнения заказа поставщиком, на среднедневную интенсивность потребления данного товара.
Формирование оптимального заказа и определение точки перезаказа позволяют сократить издержки по двум группам затрат - на размещение заказа и на хранение приобретенных запасов. Однако потребность в материалах и сроки поставки во многом зависят от поведения покупателей (колебания спроса) и поставщиков (нарушение сроков поставки). Неопределенность потребностей и нарушение сроков поставок приводят к тому, что возникает вероятность дефицита запасов и, как следствие, убытков от простоя, потеря платежеспособного спроса и т.д. При этом увеличение размера заказа не снижает вероятности возникновения дефицита, поскольку дополнительные материалы поступят уже после того, как возникнет дефицит.
В этой связи принято говорить о страховом запасе. Создание страхового запаса – это увеличение объема запасов, принимаемого за точку презаказа. Это – расчетная величина, которая влияет на точку перезаказа.
Для расчета оптимального размера страхового запаса в условиях неопределенности используются методы математической статистики и теории вероятностей. При этом можно рекомендовать следующую формулу расчета страхового запаса:
Страховой запас = k*
(9)где k — коэффициент безопасности, который определяет степень защиты от дефицита, рассчитывается в зависимости от принятого значения вероятности дефицита;
LT - средняя длительность выполнения заказа;
d - среднее значение потребности в сырье и материалах;
var d, var LT - среднеквадратические отклонения потребности соответст венно в сырье и материалах и времени выполнения заказа.
Объем страхового запаса во многом зависит от принятия или непринятия риска менеджментом компании. Но, как правило, финансовые директора не могут ответить на вопрос, какая вероятность возникновения убытков приемлема для их предприятия. Разумеется, гораздо безопаснее исключить такую вероятность вообще, но это приведет к созданию значительных страховых запасов, которыми предприятие ни разу не воспользуется.
Оптимальная вероятность убытков вследствие дефицита запасов (Р), то есть вероятность, при которой сумма убытков от простоя и затрат на хранение страхового запаса минимальна, может быть рассчитана по формуле:
P =
(10)где C — затраты на хранение одной единицы запасов за рассматриваемый период;
U — убытки из-за дефицита одной единицы запаса;
N — количество заказов за рассматриваемый период.
Нужно отметить, что данный метод применим при большом количестве операций, когда работают законы статистики. Практика показывает, что предположение о нормальном распределении случайных величин (потребности в запасах, времени выполнения заказа) дает наилучшие результаты при моделировании управления запасами.
Пример.
Для молокозавода один из наиболее значимых видов запасов — пакеты для молока, дефицит которых может привести к остановке производства. Предположим, что на изготовление и доставку пакетов поставщику требуется в среднем 5 дней с момента полу чения заказа , т.е. LT = 5. За год молокозавод размещает 12 заказов (N). Средняя дневная потребность в пакетах составляет 2000 шт. Тогда точка перезаказа будет равна 10 000 шт. (2000 шт. х 5 дн.).
Теперь рассмотрим, как изменится это значение при создании оптимального страхового запаса. При расчете исходим из того, что затраты на хранение одного пакета в год (C) составляют 0,4 руб. при стоимости пакета 1 руб. Убытки от простоя, вызванного дефицитом одного пакета (U), — 10 руб. Рассчитаем оптимальную вероятность возникно вения убытков за один цикл заказа:
P = 0,4 руб/ (10 руб. х 12) = 0,0033.
Абсолютное значение коэффициента безопасности k для вероятности 0,0033 соста вит 2,71 (расчет выполнен в Excel). Анализ колебаний дневной потребности в пакетах и сроках поставки показал, что среднеквадратическое отклонение дневной потребности (vard), вызванное колебанием спроса, равно 200. Среднеквадратическое отклонение в сроках поставки (var LT) — 2. Страховой запас будет равен 7668 шт.
. Соответственно величина точки перезаказа с учетом страхового запаса составит 17 668 шт. (10 000 + 7668).