Смекни!
smekni.com

Розвиток наукових основ оцінки впливу навантаженності на довговічнічність рухомих елементів свердловинного обладнання (стр. 6 из 9)

Наступний етап обробки отриманих результатів потребує деяких пояснень. Кінетичні криві втоми мають дуже важливу в даному випадку закономірність, яка підтверджена численними експериментальними дослідженнями. Вона полягає в тому, що такі параметри кривої втоми (11), як

і
– кількість циклів до нижнього перегину кривої, не залежать від ступеня пошкодження деталі чи зразка. Тому можна стверджувати, що їх значення є медіанними значеннями параметрів
і
для кінетичних кривих втоми з різними ступенями пошкодження. Таким чином, наступна обробка експериментальних даних полягає у визначенні тільки двох параметрів кривої (10-12), а саме,
і
для кожного ступеня пошкодження. Алгоритм розрахунку на цьому етапі відрізняється використанням залежностей

і
.

На основі даного алгоритму створено комплексну програму розрахунку параметрів та побудови кінетичних кривих корозійної втоми з різною імовірністю неруйнування.

Для визначення еквівалентного експлуатаційного напруження

пропонується використання рівняння кривої втоми у формі (11). У такому випадку рівняння матиме вигляд

. (13)

Але визначення еквівалентної кількості циклів напружень

є складною задачею. У першу чергу, це пояснюється випадковим характером навантажування, змінами режимів експлуатації та іншими випадковими чинниками. Постійний контроль навантаження тільки частково вирішує дану проблему. Так, навіть при постійному моніторингу за напруженням у випадку складного багаточастотного навантажування зробити висновок про еквівалентну кількість його циклів неможливо без значних спрощень гіпотетичного характеру при схематизації процесу. Тому пропонується визначення
за допомогою кінетичних кривих втоми.

Для цього необхідно мати хоча б три криві втоми натурних зразків з визначеним терміном експлуатації в типових умовах рі, наприклад, за кількістю років експлуатації. При достатньо великих термінах експлуатації в типових умовах можна прийняти еквівалентну кількість циклів напружень за однаковий термін експлуатації

величиною незмінною.

Тоді при р1<p2<p3 отримуємо

,

і можна записати систему рівнянь

, (14)

розв’язком якої і будуть шукані величини

і
.

Таким чином, розроблено вдосконалений метод прогнозування залишкового ресурсу деталей та обладнання в типових умовах експлуатації за допомогою кінетичних кривих втоми. Його перевагами є:

- зменшення витрат на проведення експерименту при збереженні точності оцінки;

- автоматизована обробка даних з допомогою розробленого програмного забезпечення;

- оцінювання навантажування деталі та прогнозування залишкового ресурсу в умовах мінімальної інформації про її попередню експлуатацію.

Складність методу полягає в переведенні результатів довготривалих експериментальних досліджень для інших умов експлуатації. У першу чергу, труднощі пов’язані з необхідністю запису і оброблення процесу навантажування деталей протягом тривалих проміжків часу, що пов’язано зі значними матеріальними затратами та складнощами організаційного і методичного характеру. Тому для усунення даного недоліку розроблено новий метод інтегральної оцінки експлуатаційного навантаження за допомогою індикаторів навантажування.

Суть методу полягає у використанні закономірностей накопичення втомного пошкодження індикаторів з попереднім визначеним пошкодженням. Спочатку експериментально визначаємо параметри кінетичних кривих втоми індикаторів. Потім індикатори з різним фіксованим пошкодженням встановлюємо безпосередньо на елемент у верхній частині РЕСО або, при неможливості такої конструктивної схеми, на спеціальний пристрій, який сприйматиме експлуатаційне навантаження через додаткові елементи. Довговічність індикаторів буде залежати від заздалегідь визначеного попереднього і накопиченого пошкодження. При цьому кожен індикатор сприйматиме цикли напружень, вищі за його кінетичну границю витривалості. Таким чином, при складному розподілі циклів напружень буде спостерігатись закономірне запізнювання руйнування індикаторів з меншим початковим пошкодженням. Це дає змогу провести інтегральну оцінку навантажування з виділенням декількох рівнів амплітуд напружень та визначенням на кожному рівні еквівалентної кількості їх циклів. Кількість рівнів відповідає кількості індикаторів з різним попереднім пошкодженням, а їх межі – кінетичним границям витривалості індикаторів. Для оптимального поділу навантажування на рівні необхідно знати орієнтовні величини максимальних напружень та границю витривалості РЕСО, що сприймають дане навантаження.

Також у розділі наведено результати теоретичних досліджень з оцінки довговічності бурильних та штангових колон за даними експлуатаційної навантаженості та параметрами їх кривих корозійної втоми. Результати отримані за допомогою комплексної програми, розробленої для використання в програмному середовищі системи символьного числення Maple. Оцінка довговічності проводиться за розробленими методами з урахуванням поциклового зниження границі витривалості.

У шостому розділі представлено результати експериментальних досліджень з оцінки навантаженості, довговічності та залишкового ресурсу РЕСО.

З метою оцінки впливу низьких напружень експериментально досліджувалося накопичення втомних пошкоджень при циклічному ступеневому деформуванні матеріалу бурильних труб за жорсткою схемою навантажування консольним згином.

На циклічну тріщиностійкість досліджували балочні зразки, що були виготовлені безпосередньо із бурильних труб групи міцності “Д” (

т=417 МПа). Для оцінки впливу низьких напружень для кожного варіанту блока було введено ступінь навантажування, який викликає напруження, нижчі за границю витривалості матеріалу. На основі проведених досліджень встановлено, що низькі напруження при підсумовуванні втомних пошкоджень не можна оцінювати тільки з точки зору їхньої частки у загальному втомному пошкодженні. При блокових чи випадкових навантажуваннях зі ступенями, які спричиняють напруження, наближені до границі витривалості матеріалу, на перший план виходить взаємодія низьких напружень блока чи спектру навантажування з високими, найбільш руйнівними. При цьому залежно від чинників навантажування та матеріалу така взаємодія може призвести як до збільшення пошкоджень від високих напружень, так і до їх зменшення.

Таким чином, необхідно враховувати послідовність навантажування при розрахунках на втомну довговічність деталей, які працюють в умовах випадкових навантажувань з високою часткою низьких напружень спектру, що має місце при експлуатації бурильної колони. Крім цього, результати даних досліджень дають змогу більш обґрунтовано визначати послідовність ступенів блоку навантажування при проведенні експериментальних втомних досліджень натурних зразків деталей бурильної колони.

Випробовування на втомну довговічність натурних зразків бурильних труб при багатоступеневому навантажуванні практично не проводились, тому оцінка довговічності для труб великих типорозмірів має велике теоретичне й практичне значення. Для такої оцінки необхідні натурні випробування в умовах, наближених до експлуатаційних. Для вирішення даного завдання проведено випробування натурного зразка бурильної труби ТБВК-140 із замковим з’єднанням 3-147. Для розробки блоку навантажування було схематизовано методом вкладених циклів запис зміни згинального моменту, який діє на бурильну трубу, розташовану над ОБТ. Руйнування відбулося на відстані 20 мм від опорного торця ніпеля.

Відносна похибка розрахунку довговічності становить 13%. Дещо більше значення довговічності, яке спостерігається при експерименті, може бути пояснено з статистичної точки зору, а також процесами “тренування” матеріалу зразка на ступенях блоку з низькою величиною напруження.

У розділі також наведено результати експериментальних досліджень з вибору та визначення необхідних параметрів індикаторів навантажування для оцінки навантаженості геофізичного кабелю.