Смекни!
smekni.com

Технология отработки пласта выемочного участка шахты (стр. 18 из 20)

где SВ - площадь поперечного сечения выработки вчерне, м2.

Число скважин (шпуров) для эффективного увлажнения пород:

, шт, (122)

где SВС - площадь поперечного сечения выработки в свету, м2;

S у - площадь увлажнения массива через один шпур, м2. ,

Нагнетание жидкости в скважину осуществляется с помощью насосных установок типа УНВ-2, НВУ-30М, УН-35, 2УГНМ, УМР, обеспечивающих давление от 20-30 МПа. Герметизация скважины выполняется специальными гидрозатворами.

Расход жидкости в скважине контролируется счетчиком – расходомером, позволяющим проверять давление и скорость нагнетания жидкости.

При применении ПАВ дозировка их осуществляется дозаторами с пропускной способностью от 0,5 до 6 м3/ч при давлении 1,6 МПа. [8, 9]

4.3 Орошение

Наиболее распространенным способом осаждения пыли из воздуха является орошение. Суть его заключается в том, что при встрече движущейся в воздухе капли жидкости с пылинкой происходит их соударение, захват каплей пылинки и ее смачивание. Образовавшийся при этом агрегат капля-пылинка выпадает из воздуха на почву или осаждается на стенки выработки.

Капля захватывает пылинку, когда она внедряется в каплю. Для этого капля должна обладать соответствующей кинетической энергией, чтобы при встрече с пылинкой последняя могла преодолеть энергию поверхностного натяжения капли. Существует критическая скорость полета капель, при которой происходит внедрение пылинки в каплю:

, м/с, (123)

где

- энергия поверхностного натяжения капли;

- плотность пылинки мг/см2;

rп - радиус пылинки, мм;

Rк - радиус капли.

Чем ниже величина поверхностного натяжения, больше плотность пылинки и ее радиус, тем ниже критическая скорость. Для того чтобы обеспечить Vкр в активной зоне факела, в оросителе следует создавать давление от 1,5 до 4 МПа.

Определяющую роль в эффективности орошения играют гидрофильность (способность смачиваться), размер частиц пыли и капель, их число в факеле орошения и скорость встречи с частицами пыли.

Оптимальные размеры капель диспергированной жидкости зависят от скорости движения воздуха и высоты выработки. Эффективность улавливания пыли диспергированной жидкостью определяем по формуле:

, (124)

где kп - коэффициент коагуляции;

nк - число капель жидкости в 1 м3 воздуха;

HВ - высота выработки, м;

- скорость оседания капель жидкости, м/с;

- скорость движения воздуха, м/с;

x - расстояние от места начала коагуляции водного и пылевого аэрозоля, м.

Повышение эффективности орошения достигается путем правильного применения ПАВ с учетом физико-химических свойств ПАВ и орошаемой пыли. В основном в настоящее время при орошении используется неионогенное ПАВ типа ДБ с концентрацией 0,1 - 0,2 %.

Орошение подразделяется на низконапорное, высоконапорное, пневмогидроорошение, гидроакустическое, туманообразование и водовоздушное эжектирование.

При низконапорном орошении при давлении до 2 МПа и пневмоорошении в местах образования пыли происходит связывание ее и осаждение пыли, перешедшей во взвешенное состояние.

Высоконапорное орошение при давлении до 15 МПа, применение водовоздушных эжекторов и туманообразователей обеспечивают осаждение пыли, витающей в воздухе.

Низконапорное орошение применяют в очистных и подготовительных забоях, при погрузке и перегрузке горной массы. Давление жидкости у оросителя должно быть в пределах 1,2 - 2 МПа, а расстояние от оросителя до источника пылеобразования 0,1 - 0,3 м, что позволяет обеспечить сохранение критической скорости полета капель, при которой происходит эффективный захват частиц пыли. Параметры орошения зависят от условий взаимодействия частиц пыли с каплями жидкости. Для эффективного пылеосаждения рекомендуется применять следующие параметры:

а) При орошении зоны разрушения массива удельный расход воды 10-25л/т, рабочее давление 1,2-2 МПа, расстояние от оросителя до источника пылеобразования 0,3 м.

б) При внешнем орошении зон погрузки и перегрузки горной массы удельный расход жидкости 6-15 л/т, рабочее давление 1,2-2 МПа, расстояние от оросителя до источника пылеобразования 0,5-1 м.

в) При осаждении витающей пыли из воздуха удельный расход жидкости 6-15 л/мин на 1 м3 воздуха, рабочее давление 2 МПа.

Для каждого забоя должна быть своя насосная установка, обеспечивающая суммарные расходы жидкости и требуемое давление. Необходимо, чтобы рабочая зона факела орошения перекрывала источник пылеобразования.

При передвижке механизированных крепей образуется большое количество пыли. Для предотвращения поступления этой пыли в очистной забойной при передвижке крепей поддерживающего типа применяют схему орошения. С помощью оросительных устройств воду подают вдоль межсекционных зазоров в сторону выработанного пространства. Расход воды составляет 10 л/мин при давлении 1-1,5 МПа. На крепях оградительно-поддерживающего типа устанавливают оросительные устройства для подачи воды в межсекционное и выработанное пространство. Расход воды составляет 35 л/мин при давлении 1-1,5МПа.

При наличии энергии сжатого воздуха применяют пневмогидроорошение (ПГО), сущность которого заключается в том, что при одновременной подаче в форсунку жидкости и сжатого воздуха происходит тонкое диспергирование жидкости. При этом необходимо, чтобы образовался факел тонкодиспергированной (размер капель 40—60 мкм) и грубодиспергированной (размер капель 100—200 мкм) жидкости. Чем более однороден по размерам капель каждый из этих факелов, тем выше эффективность пылеосаждения.

Объемное отношение расхода жидкости и воздуха находится в пределах от 80 до 30. Давление жидкости и воздуха в оросителе равно 0,4-0,5 МПа. Расход жидкости составляет 4-8 л/мин.

При высоконапорном орошении происходит тонкое диспергирование жидкости, за счет чего увеличивается число капель в единице объема воздуха, факел орошения становится более насыщенным каплями жидкости, увеличивается скорость полета капель, что способствует эффективному использованию инерционного и седиментационного пылеосаждения. Кроме того, в результате инжекции запыленного воздуха факелом диспергированной воды увеличиваются размеры очищаемой пыли и степень турбулизации потока воздуха у мест образования пыли.

Расход жидкости при высоконапорном орошении составляет 0,07-0,25 л/м3 запыленного воздуха.

Эффективность очистки воздуха от пыли при высоконапорном орошении составляет 90-97 %. Весьма важно, что при этом повышается степень улавливания тонкодиспергированных частиц пыли размером менее 5 мкм.

В настоящее время ведутся большие работы по использованию электрических зарядов частиц пыли и наведенного заряда на каплю жидкости для повышения эффективности пылеулавливания. Как показали исследования, частицы пыли несут на себе заряды различных знаков. При этом напряженность электрического поля пылевого аэрозоля достигает 3 В/м. Зная знак заряда на пылинках, капли жидкости заряжают противоположным знаком, чтобы увеличить эффективность пылеулавливания.

Предварительная электризация частиц пыли зарядом знака, обратного заряду капель, позволяет повысить эффективность пылеосаждения всех фракций на 12- 15 %.

Гидроакустическое орошение заключается в том, что на пылевой аэрозоль одновременно оказывают воздействие капли жидкости и акустические колебания, создаваемые струёй жидкости при выходе из оросителя до ее

распада. При этом можно подобрать такую частоту колебаний, что пыль в акустическом поле будет агрегироваться, а диспергированная жидкость смачивать ее и осаждать. Гидроакустический способ рекомендуется для улавливания витающей пыли. Для эффективного пылеподавления необходимо выдерживать следующие параметры: давление воды у оросителя 0,35 - 0,8 МПа, расход жидкости 0,2 л/м3 орошаемого воздуха, частота колебаний 3 - 4 кГц, акустическая мощность 20-25Вт/м2.

Для гидроакустического осаждения пыли применяется форсунка типа ФА, обеспечивающая эффективность пылеосаждения до 90 %.

Пневмогидравлические эжекторы используются для улавливания пыли при работе проходческих и добычных комбайнов. [6, 8]

4.4 Пылеулавливание

Суть пылеулавливания заключается в том, что выходящий из специального устройства воздух создает в определенной области разрежение, куда подсасывается запыленный воздух, на последний воздействует тонкодиспергированная жидкость. Осажденная пыль в виде шлама удаляется. Эффективность пылеподавления такого способа достигает 95— 99 % при давлении воды 0,8—1 МПа, давление сжатого воздуха 0,3—0,4 МПа и расходе воды 0,5—3,5 л/мин.

Оборудование для орошения включает насосные установки, забойные водопроводные магистрали, фильтры и оросители. В качестве насосных установок используют насосы ОН-2. НУМС-ЗОЕ, НУМС-100Е, НУМС-200Е, УЦНС, УМО, обеспечивающие давление 1,3-3,2 МПа с подачей 20-400 л/мин.

Для очистки воды от эпических взвесей используют фильтры ФШ-1М, ФШ-200, ФК и ФШЦ.

Одним из основных элементов оросительной системы являются оросители. Наибольшее распространение получили зонтичные оросители типа ЗФ, у которых факел жидкости имеет вид зонта; конусные типа КФ, у которых факел имеет вид полого или сплошного конуса; плоскоструйные типа ПФ, у которых факел имеет плоскую форму; тангенциальные типа ФТ, у которых жидкость поступает в камеру по тангенциальному каналу и при этом происходит закручивание факела.