Смекни!
smekni.com

Проект инженерно-геологических изысканий для застройки второй очереди МКР "Каштак" (стр. 14 из 19)

Монтаж гирлянды электрических датчиков температуры должен выполняться по схеме, однотипным (из одной бухты) многожильным медным проводом сечением 0,35-0,5 мм2 с надежной изоляцией; места спаек должны быть электро- и гидроизолированы.

Разница в сопротивлениях соединительных проводов, измеренная на клеммах разъема, не должна превышать 0,01 Ом; сопротивление изоляции проводов, шунтирующее датчик, должно быть не менее 2 Мом.

В качестве измерительных приборов к электрическим датчикам следует применять специальные термометрические многопредельные неравновесные мосты или потенциометры постоянного тока, отградуированные в градусах Цельсия, при цене деления шкалы не более 0,1ºС, либо лабораторные мосты сопротивлений класса точности 0,05-0,1% (МО-62, МО-64, Р-39 и т.п.), подключаемые к гирлянде через узел коммутации.

При инженерно-геокриологических исследованиях глубины измерения температуры в скважинах диаметром не более 160 мм следует принимать: в пределах первых 3 м – кратными 0,5 м; затем, до глубины 5 м – кратными 1 м; далее – на глубинах 7 и 10 м.

Измерения температуры грунтов следует производить в следующем порядке:

перед спуском термоизмерительной гирлянды в скважину проверяют рабочую глубину скважины, отсутствие в ней воды;

в скважину опускают гирлянду на заданную глубину, закрепляют во входном отверстии скважины пробкой и оставляют на время выдержки;

оценивают период выдержки;

по истечении периода выдержки гирлянды в скважине производят измерения и регистрацию температуры грунта, термометры извлекают по одному из скважины, не допуская попадания на термометр прямых солнечных лучей;

производят оценку значений температуры путем сопоставления их между собой или с данными предыдущих измерений. При наличии аномальных отклонений измерения следует повторить;

по окончании измерений переносную гирлянду извлекают из скважины, скважину закрывают пробкой, а короб крышкой.

Время выдержки гирлянды электрических датчиков составляет 1 час.

Температуру грунтов tiна глубине di, измеряемую мостом электрических сопротивлений надлежит вычислять по формуле

(14)

где Ri – электрическое сопротивление, измеренное при положениях переключателя К1, К2,…, Кn, Ом;

Rо – номинал сопротивления электрического термометра, Ом, при температуре 0ºС;

Rs= RL+ Ro – суммарное сопротивление линии связи RLи образцового резистора, определяемое в положении Ко переключателя, Ом;

α – температурный коэффициент сопротивления (для медного провода α=0,00426), 1/ºС;

Δ – индивидуальная поправка на «место нуля» электрического термометра, ºС.

По результатам измерений температуры грунтов следует составлять технический отчет, который должен включать:

- техническое задание и программу проведения термоизмерительных работ;

- примененную методику измерений;

- оценку инструментальных и дополнительных погрешностей;

- акты проверок измерительной аппаратуры;

- ситуационный план площадки с указанием плановой и высотной привязки скважин;

- сводную ведомость температуры грунтов;

- графические материалы;

- выводы о результатах термоизмерительных работ. [ГОСТ 25258-82 Метод полевого определения температуры]

В термометрических скважинах (3 скважины) используются для ведения стационарных наблюдений в период проектирования, строительства, эксплуатации и ликвидации сооружений. Наблюдения в скважинах за температурой пород должны проводиться в течение года. С октября по март замеры будут проводиться 1 раз в 10 дней, а с апреля по сентябрь – 1 раз в месяц. Итого будет проделано 72 замера.

3.8.2 Стационарные наблюдения за наледью

Для характеристики процесса необходимо измерять следующие параметры наледи: площадь (F), среднюю мощность (Н), средний слой нарастания (hH) и средний слой оттаивания (hr) льда на их поверхности.

Для периодического определения морфометрических характеристик наледи в пределах их устанавливаются размеченные рейки или ледомерные вехи. Наиболее целесообразно размещение ледомерных вех в углах прямоугольной сетки.

Более детальная характеристика динамики оттаивания льда по суточным и полусуточным интервалам времени может быть получена с помощью метода «индикаторных» площадок. Слой оттаивания льда с поверхности наледи в этом случае определяется нивелировкой у точек наблюдений, расположенных по прямоугольной сетке в квадрате небольших размеров. Всего должно быть не менее 30 точек измерения с тем, чтобы получить несмещенную оценку среднего слоя оттаивания между датами наблюдений. Площадку целесообразно выбирать в том месте наледи, где слои оттаивания льда близки к их средним значениям, определенным для всей наледи.

Рейки устанавливают осенью после исчезновения наледи и закрепляют в грунте с таким расчетом, чтобы ноль отсчета совпадал с поверхностью земли. Все рейки должны быть пронумерованы, размечены через 1 м и иметь длину, обеспечивающую измерение максимальной толщины льда в точке. Углы между направлениями на соседние вехи в каждой точке составляют 90º. Зимой рейки вмерзают в лед.

При производстве ледомерной съемки толщину наледи у каждой вехи измеряют с точностью до 1 см переносной рейкой от первой засечки до поверхности льда и воды, исключая высоту снежного покрова. Расстояние до границ распространения наледи измеряют от ближайшей крайней вехи с точностью до 0,5 м. У границ наледи в створе ледомерных вех измеряют мощность льда. Состояние поверхности наледи (трещины, бугры, промоины, проседания льда и т.п.) наносят на картограммы.

Ледомерные съемки проводятся в течение одного дня три раза в месяц: 10, 20 числа и в последний день месяца. В период интенсивного таяния (июнь, июль), а также в теплое время года съемки целесообразно проводить через 5 дней.

Наблюдения на «индикаторной» площадке целесообразно проводить ежедневно в 8 часов, а при необходимости оценить интенсивность стаивания льда по полусуточным интервалам – в 8 и 20 часов.

Максимальные размеры одной и той же наледи в конце каждой зимы различны. Для того, чтобы определить их средние многолетние значения необходимо наблюдать в течение ряда лет, число которых зависит от размаха колебаний объемов, площадей и мощностей наледи год от года. Необходимую продолжительность многолетнего ряда наблюдений за параметрам наледи со средней квадратической погрешностью их определения 5 и 10%. [8]

Также в летнее время необходимо организовать стационарные наблюдения за источниками, питающими наледь. Для этого следует организовать наблюдения за дебитом, температурой, а также произвести отбор пробы воды на полный химический анализ (объемом 5л (1л из которого законсервировать 3 мл концентрированной HCl)).

Согласно проекту работ, продолжительность наблюдений – один год, частота замеров дебита и температуры – один раз в декаду, отбор проб воды – один раз в квартал.

Согласно проекту работ замер дебита будет проведен - 36 раз, описание источника - 4 раза, замер температуры воды - 36 раз, отбор проб на полный химический анализ - 4 раза.

Согласно проекту и СанПиН объем проб составит на полный химический анализ (ЛИЦИМС и ИПТМ РАН) – 5+2=7л (6 пр.)

Дебит следует замерять переносной водосливной рамкой (до 9 л/с), которая изготовляется из листового железа толщиной 2 мм. Прямоугольный вырез размером 0,2 Х 0,2 м имеет острые края. Вдоль вертикальных ребер закреплены две металлические линейки, так что нуль шкалы совпадает с горизонтальным ребром выреза.

Замер температуры воды производится ртутным термометром ТМ-14, который имеет допустимую погрешность 0,5оС.

3.9Лабораторные работы

Лабораторные исследования грунтов следует выполнять с целью: определения их состава, состояния, физических, механических, прочностных, деформационных свойств, определения их нормативных и расчетных характеристик; выявления степени однородности состава и свойств грунтов по площади и глубине; выделения инженерно-геологических элементов, прогноза состояния и свойств грунтов в процессе строительства и эксплуатации объектов.[14]

Планируется выполнить комплекс лабораторных работ. Виды лабораторных работ и их объемы приведены в таблице 3.1.

Таблица 3.1

Виды и объемы лабораторных работ

№ п/п Виды работ Объем работ
Песчаные грунты
1 Полный комплекс физико-механических свойств грунта с определением сопротивления грунта срезу и компрессионными испытаниями до 0,6 МПа 30
Глинистые грунты
2 Полный комплекс физико-механических свойств грунта с определением сопротивления грунта срезу под нагрузкой до 0,6 МПа 30
3 Сокращенный химический анализ воды 6
4 Определение химического анализа водной вытяжки 6

3.10 Камеральные работы и написание отчета

Камеральную обработку полученных материалов необходимо осуществлять в процессе производства полевых работ (текущую, предварительную) и после их завершения и выполнения лабораторных исследований (окончательная камеральная обработка и составление технического отчета или заключения о результатах инженерно-геологических изысканий). Текущую обработку материалов необходимо производить с целью обеспечения контроля за полнотой и качеством инженерно-геологических работ и своевременной корректировки программы изысканий в зависимости от полученных промежуточных результатов изыскательских работ.