Смекни!
smekni.com

Физика нефтяного пласта (стр. 6 из 8)

Опыт показывает, что с увеличением концентрации полимера в растворе фазовая проницаемость пористой среды для смачивающей фазы уменьшается, а проницаемость для углеводородной жидкости при одной и той же насыщенности возрастает (при концентрациях полимера до 0,05 %). По данным лабораторных опытов, нефтеотдача может возрастать при вытеснении нефти полимерными растворами на 15—20% (данные получены на линейных моделях с однородными пористыми средами.

На практике для экономии полимера целесообразно закачивать в пласт оторочку загущенной полимеров воды и далее продвигать ее по пласту обычной водой. Чтобы оторочка не полностью размылась до подхода к эксплуатационным скважинам, объем ее должен быть подобран с учетом неоднородности пласта, соотношения i0вязкостей нефти и раствора полимера.

4.3. Применение углекислого газа

Углекислый газ, растворенный в воде или введенный в пласт в жидком виде, благоприятно воздействует на физико-химические свойства нефти, воды и способствует увеличению нефтеотдачи пластов. При этом улучшаются и фильтрационные свойства пластовой системы.

СО2 — бесцветный газ тяжелее воздyxa(относительная плотность 1,529). Критическая температура 31,05 °С; критическое давление — 7,38 МПа, критическая плотность — 468 кг/м3. При температуре 20 °С под давлением 5,85 Мпа превращается в бесцветную жидкость с плотностью 770 кг/м3. При сильном охлаждении СО2 застывает в белую снегообразную массу с плотностью 1,65 г/см3, которая возгоняется при температуре — 78,5 °С (при атмосферном давлении).

Таблица 2 Свойства углекислого газа в точках росы

Температура°С Давлениер,Мпа Плотность р, кг.'м3 Коэф-фициент летучести V
жидкостисти газа
20 5,73 778 193 0,178
21 5,86 767 202 0,174
22 6,0 755 211 0,170
23 6,14 742 221 0,167
24 6,29 729 231 0,163
25 6,44 714 242 0,160
26 6,58 697 256 0,156
27 6,74 679 272 0,152
28 6,89 657 291 0,148
29 7,05 630 312 0,145
30 7,21 593 340 0,142
31,0 7,38 468 358 0,139
31,05 Критическая температура

В табл. 2 приведены данные, характеризующие свойства углекислого газа в точке росы (начало конденсации).

Растворимость СО2 в воде с увеличением давления возрастает. Массовая доля его не превышает 6 %. С повышением температуры до 80 °С и минерализации воды растворимость СО2 уменьшается. С увеличением концентрации двуокиси углерода вязкость воды возрастает. Растворимость углекислого газа в нефтях является функцией давления, температуры, молекулярной массы и состава нефти. С уменьшением молекулярной массы углеводородов растворимость СОэ в них возрастает. С очень легкими нефтями СОг смешивается полностью при давлениях 5,6 — 7 МПа. Тяжелые нефти в жидкой двуокиси углерода растворяются не полностью — нерастворимый остаток состоит из тяжелых углеводородов (смол, твердых парафинов и т. д.). С увеличением соотношения объема жидкой углекислоты к объему нефти в смеси растворимость нефти возрастает.

Для характеристики состава и свойств нефти часто используется эмпирический параметр, впервые введенный Ватсоном, который называется характеристическим фактором. Он зависит от содержания в нефти углеводородов различного группового состава. Характеристический фактор для парафиновых нефтей уменьшается с увеличением в них нафтеновых углеводородов. Его значение еще меньше для иефтей, содержащих значительные количества ароматических углеводородов.

Для увеличения нефтеотдачи пластов углекислый газ в качестве вытесняющей нефть оторочки нагнетается в сжиженном виде в пористую среду и затем проталкивается карбонизированной водой.) По результатам лабораторных исследований при объеме оторочки жидкой углекислоты, равном 4—5 % от объема пор обрабатываемого участка, нефтеотдача возрастает более чем на 50 % по сравнению с нефтеотдачей при обычном заводнении. Углекислый газ — эффективное средство увеличения нефтеотдачи как карбонатных коллекторов, так и песчаников, в которых пластовое давление составляет 5,6 МПа и более, а температура изменяется в пределах 24—71 °С.

Значительные количества необходимого углекислого газа можно получить путем улавливания его из дымовых и других газов. Углекислый газ является побочным продуктом ряда химических производств. Встречаются в природе также залежи углекислого газа с примесями других газов.

В заключение следует отметить, что углекислый газ в нефтепромысловом деле применяется также для охлаждения забоев скважин (используется СО2 в твердом, виде) с целью повышения эффективности кислотных обработок. Холодная соляная кислота способна проникать в карбонатный пласт в удаленные от забоя скважин зоны, сохраняя свою активность. Кроме того, само добавление СО2 в соляную кислоту также улучшает результаты обработок скважин вследствие замедления скорости реакции.

4.4 Мицелярные растворы

Как известно, (нефть и вода при обычных условиях в коллекторах не смешиваются. Образующиеся на контактах нефти и воды в пористых средах границы раздела приводят к возникновению многочисленных капиллярных эффектов, отрицательно влияющих на процесс фильтрации нефти и воды. Например, как было показано в предыдущих разделах, фильтрация в пористых средах многофазных систем (смесей нефти, воды и газа) приводит к повышенным сопротивлениям. Процесс вытеснения нефти водой может быть приближен к условиям фильтрации однородных систем без ощутимого влияния на движение флюидов многочисленных границ раздела, если между нефтью и водой поместить оторочку мицеллярного раствора (смеси углеводородных жидкостей, воды и поверхностно-активных веществ, растворимых в углеводородах, и стабилизаторов). В качестве стабилизаторов обычно используются спирты (изопропиловый, бутиловый и др.) J Углеводородную часть мицеллярного раствора может составить легкая нефть фракции С5+.

Нефтерастворимыми поверхностно-активными веществами (ПАВ) являются нефтяные сульфонаты, алкиларилсульфонаты, алкилфенолы. При содержании в системе поверхностно-активных веществ концентрации выше критической концентрации мицеллообразования ПАВ находится в растворе в виде сгустков (мицелл), которые способны поглощать жидкости, составляющие их внутреннюю фазу. При значительной концентрации ПАВ последние в процессе перемешивания вместе с нефтью и водой образуют нефтеводяные агрегаты — мицеллы, строение которых зависит от количественного состава компонентов и их свойств. На рис. приведены схемы строения мицелл с водяной и нефтяной основой. У мицеллы с водяной основой внешней фазой является нефть. Молекулы ПАВ полярной частью (кружочки на рис. 8 обращены к воде, а углеводородными цепями — к нефти. Несмотря на содержание в таком мицеллярном растворе до 95 % воды, он хорошо смешивается с нефтью, ибо внешней фазой даже при большой концентрации воды в системе оказывается нефть).

Рис. 8.

Мицеллярные растворы способны растворять жидкости, составляющие их внутреннюю основу (ядро). При этом размеры мицелл возрастают и в некоторый момент наступает обращение фаз — вместо внешней фазы оказывается вода и наоборот.

Внешне мицеллярные растворы представляют собой однородные прозрачные или полупрозрачные жидкости (размеры мицелл 105—106 мм). Считается, что по реологическим свойствам они относятся к ньютоновским жидкостям.

Вязкость мицеллярных растворов с нефтяной внешней фазой вначале возрастает с увеличением содержания воды в системе и может достигать 100 мПа-с при водосодержании до 40—45 %. Дальнейшее увеличение концентрации воды (если она сопровождается инверсией типа раствора) приводит к снижению вязкости.

В зависимости от состава и свойств компонентов мицеллярных растворов закономерности изменения вязкости от водосодержания могут быть другими. Соли, присутствующие в воде, снижают вязкость растворов. Это свойство используется для регулирования их вязкости. Состав солей влияет на устойчивость мицеллярных растворов, что должно быть учтено при выборе ПАВ и других их составляющих. Мицеллярные растворы устойчивы только при определенных концентрациях солей.

Упомянутые свойства мицеллярных растворов способствуют при их нагнетании в пласт значительному повышению эффективности вытеснения нефти из коллектора. На практике оторочки мицеллярных растворов продвигаются по пласту водой, загущенной полимерами и водой. Минимальный объем оторочек для однородных пористых сред составляет 4—5 % от объема пор обрабатываемого участка.

По лабораторным данным, мицеллярные растворы способны вытеснять до 50—60 % нефти, оставшейся в пласте после обычного его заводнения. Благоприятные результаты получены даже при водонасыщенности пород до применения мицеллярных растворов, достигающей 70 % от объема пор. Недостаток этих растворов — их чрезвычайная дороговизна из-за большого расхода ПАВ и других его компонентов. Для получения необходимых свойств мицеллярных растворов доля ПАВ в системе как минимум должна быть 9—15%, спирта 4—5%.

4.5 Термические способы нефтеотдачи пластов