В целом по Суторминскому месторождению на 01.01.2000 год прирост запасов нефти составил 523 тыс.т (0,15% от запасов месторождения), запасы категории С2 уменьшились на 8952 тыс.т (29,94%).
Площади нефтеносности залежей, начальные балансовые и извлекаемые запасы нефти и растворенного газа, подсчетные параметры и запасы свободного газа, числящихся на балансе ВГФ на 01.01.2000 год приведены в таблице 1.5.1 и 1.5.2.
В целом по месторождению запасы нефти по категории В+С1 составляют:
- начальные балансовые – 348167 тыс.т;
- остаточные – 272085 тыс.т;
- начальные извлекаемые – 96406 тыс.т;
- остаточные извлекаемые – 20324 тыс.т.
Запасы растворенного газа по категориям В+С1 составляют:
- начальные извлекаемые – 5407 млн.м3;
- остаточные извлекаемые – 5407 млн.м3.
Запасы свободного газа по категории С1 составляют 54442 млн.м3.
Проектирование разработки нефтяных месторождений осуществляется на базе математического моделирования процессов, происходящих при вытеснении нефти из пласта. С этой целью используются математические модели нефтяной залежи.
В качестве модели нефтяной залежи служат соотношения или системы уравнений, с помощью которых производится воспроизведение или отражение нефтяной залежи и процессов, происходящих при ее разработке.
Параметры математической модели залежи определяются на основе обработки геолого-промысловых данных.
Продуктивный пласт и насыщающие его флюиды (нефть и вода) можно охарактеризовать как сложную (большую) систему, которую, согласно принципу целостности, нельзя исследовать точно.
При создании моделей нефтяных залежей обычно стремятся с одной стороны получить наиболее полное описание объекта, с другой - обеспечить простоту, обозримость и технологичность выполнения расчетов с помощью имеющихся в распоряжении вычислительных средств.
Построение каждой модели залежи в определенной мере условно и неизбежно связано с субъективными решениями и гипотезами.
В настоящее время в распоряжении организаций, занимающихся проектированием разработки нефтяных месторождений, имеются математические модели различной размерности (одномерные, двумерные и трехмерные), позволяющие учитывать разное количество фаз (двухфазные и трехфазные) и разное количество компонентов (композиционные модели, в которых каждая фаза рассматривается как многокомпонентная смесь).
Выбор той или иной математической модели в основном определяется возможностями имеющихся вычислительных средств, наличием необходимой информации о геологическом строении залежи, трудоемкостью расчетов, необходимой точностью прогноза и ряда других факторов.
В общем случае модель должна обеспечивать баланс между простотой и информативностью, чтобы расчеты проведенные с ее помощью правильно отражали реальные процессы, такому балансу в настоящее время для целей конкретного проектирования в наибольшей мере удовлетворяют слоисто-неоднородные безадресные модели нефтяных пластов.
В связи с этим подробно остановимся на применении таких моделей. Опыт проектирования разработки нефтяных месторождений показал, что модель пласта должна правильно отображать влияние наиболее существенных геолого-физических факторов и технологических параметров на ход процесса разработки. Так, например, при заводнении основными являются следующие геолого-физические факторы:
1) неоднородность коллекторских свойств пласта (проницаемости, пористости, начальной и остаточной нефтенасыщенности);
2) различие вязкостей нефти и воды;
3) характер вытеснения нефти водой;
4) наличие водо-нефтяных зон;
5) прерывистость пласта;
6) технологические параметры: вид системы заводнения (геометрия размещения скважин), плотность сетки скважин или удаленность добывающих рядов скважин от нагнетательного;
перепад давления между ними.
Одной из наиболее распространенных форм математических моделей нефтяного пласта, применяющихся при проектировании разработки нефтяных месторождений с заводнением, является слоистая модель. Слоистая модель пласта - основа расчетных методик, используемых во многих институтах (ВНИИ, ТатНИПИ, БашНИПИ, СибНИПИ, Гипровостокнефть и др., а также за рубежом) - прошла широкую практическую апробацию при проектировании большинства нефтяных месторождений Советского Союза и других стран мира.
Рассмотрим в качестве примера модель нефтяного пласта, применяемую в институте "Гипровостокнефтъ" и возможность учета при ее применении перечисленных выше факторов. Согласно этой модели нефтяной пласт представляется состоящим из совокупности изолированных трубок тока, характеризующихся различными фильтрационными свойствами. Каждая трубка тока из этой совокупности оказывается состоящей из некоторого количества разно проницаемых элементов пласта. Эффективная проницаемость такой трубки тока определяется как средняя гармоническая величина составляющих ее элементов.
Учет влияния начальных водонефтяных зон в слоистой модели производится следующим образом. Контур питания (или нагнетательный ряд скважин) располагается у внешнего контура нефтеносности, см.рис.13 работа / 2 /. Наклонная поверхность водонефтяного контакта (ВНК) аппроксимируется ступенчатой поверхностью; при этом залежь оказывается состоящей из набора слоев с вертикальным водонефтяным контактом, удаленным на различное расстояние в каждом слое. Если известна закономерность изменения проницаемости или параметры w (параметр w характеризует комплексную неоднородность коллекторских свойств пласта,
(2.1)где: К - проницаемость,
m - пористость,
S - начальная нефтенасыщенностъ,
h -коэффициент вытеснения нефти водой) от кровли к подошве, то в модели пласта это можно учесть, приписывая слою с определенной проницаемостью соответствующее значение расстояния от ВНК до эксплуатационной галереи. В большинстве случаев такие закономерности не бывают известны либо не наблюдаются вообще. В этом случае расчетная модель пласта строится следующим образом. В каждой ступеньке, аппроксимирующей участок поверхности ВНК, выделяется полный спектр трубок тока, неоднородных по проницаемости и другим фильтрационным параметрам. Спектр неоднородности определяется в соответствии с соотношениями, приведенными ниже и принимается одинаковым для всех ступенек. Величина водонефтяной зоны характеризуется параметром W:
(2.2)где L1 и L2 - расстояние от эксплуатационного ряда скважин до внутреннего и внешнего контуров нефтеносности.
При отсутствии водонефтяной зоны W=0; для залежей, подстилаемых пластовыми водами на всей площади ("водоплавающих" залежей), при перфорации всей нефтенасыщенной толщины пласта W=1. Величиной W учитывается также степень вскрытия перфорацией толщины пласта в скважинах, расположенных в водонефтяных зонах.
Различие вязкости нефти и воды, а также изменчивость их по площади залежи в слоистой модели учитывается в гидродинамических расчетах при прослеживании приближения водонефтяного контакта по каждой трубке тока.
Характер вытеснения нефти водой (поршневой или не поршневой) учитывается в расчетах путем аппроксимации функции Баклея-Леверетта для различных кривых фазовых проницаемостей и дальнейшим прослеживанием изменения фильтрационных параметров, нефте- и водонасыщенности по каждой трубке тока с последующим суммированием показателей по всей совокупности трубок тока. При поршневом вытеснении фазовые проницаемости и насыщенности изменяются скачком после прохождения фронта вытеснения.
Из технологических параметров большое влияние на ход процесса заводнения оказывает вид системы заводнения, т.е. взаимное расположение на площади залежи добывающих и нагнетательных скважин. В математической модели геометрия потоков жидкости в систему скважин учитывается введением некоторой эквивалентной криволинейной галереи. Эта галерея строится на основе карт фильтрационных потоков однородной жидкости для конкретных областей фильтрации, схем расположения скважин и граничных условий на них (по данным расчетов на ЭВМ). Принимая условие неизменности траекторий движения жидкости (жесткости трубок тока), истинная карта фильтрационных потоков трансформируется в криволинейную галерею. Криволинейная галерея учитывает не только расположение скважин, но и зональную неоднородность пласта.
Сопоставление результатов решения задач по методу криволинейной галереи с точными аналитическими решениями, а также с приближенными решениями, полученными на основе уравнений двумерной фильтрации жидкостей, показывает достаточно высокую точность расчетов по криволинейной галерее в случае фильтрации жидкостей с равными подвижностями и практически приемлемую точность для жидкостей с различными подвижностями.
Для большинства применяемых в настоящее время регулярных систем разработки получен спектр распределения длин трубок тока, который можно использовать для расчета процесса заводнения однородного и слоисто-неоднородного пласта. Для зонально-неоднородного пласта спектр распределения длин трубок тока необходимо получать с помощью аналоговых или цифровых вычислительных машин.
Отметим, что для многорядных систем заводнения расчетная модель каждого ряда скважин будет различаться не только видом криволинейной галереи, но также и степенью неоднородности модели, которая зависит от масштаба неоднородности пласта и расстояния между нагнетательной и добывающей скважинами.
Аналогичным образом учитывается в модели и изменение плотности сетки скважин: с одной стороны изменяется характеристика неоднородности модели, с другой стороны - в результате прерывистости пласта - эффективная проницаемость и дренируемый объем пласта (коэффициенты x (КS; l/d ) и bдр (КS; l/d.).