Изложенные результаты нефтепроявлений скв.402 не допускают также возможности объяснения попадания фильтрата глинистого раствора в пласт путем обычного опережающего оттеснения нефти из-под долота и от стенок скважины. Если бы это происходило, то не было бы нефтепроявлений, так как непосредственно призабойная зона пласта оказалась бы промытой и содержащей лишь остаточную нефть.
Следовательно, эти взаимозависимые явления (внедрение фильтрата раствора в пласт и приток нефти из него в скважины, где давление столба раствора выше, чем в пласте) можно объяснить лишь одновременным встречным движением в пористой среде воды и нефти. Такие условия могут возникнуть только вследствие активных капиллярных процессов, а именно капиллярного противотока фильтрата раствора из скважины в пласт, а нефти во встречном направлении из пласта в скважину.
Рассмотренные результаты исследований нефтепроявлений пластов при бурении позволяют сделать важную практическую рекомендацию. Для предотвращения аварийного выброса раствора из бурящихся скважин необходимо с появлением первых признаков нефти в растворе не прекращать бурения и промывки скважин раствором, а наоборот, промывку следует усиливать.
Тогда притекающая в скважину нефть будет примешиваться к раствору в небольшой концентрации, облегчение раствора будет незначительным, а выброс его невозможен.
2. Следующим промысловым примером, иллюстрирующим проявление капиллярных сил в нефтенасыщенной пористой среде, является промывка керна фильтратом глинистого раствора.
Широкий опыт исследования нефтенасыщенности кернов, извлеченных из различных пластов, свидетельствует о том, что происходит промывка их фильтратом глинистого раствора, поскольку содержание нефти в кернах существенно ниже, а воды определенно выше, чем в пластовых условиях. Причем вода в кернах имеет явные признаки фильтрата промывочного раствора.
Обычно факт промывки кернов объясняется опережающим оттеснением нефти фильтратом раствора из-под долота, т.е. предполагается, что это процесс локального заводнения за счет гидростатического перепада давления. Однако такое представление недостаточно обосновано и многие фактические данные противоречат ему. В качестве примера можно рассмотреть результаты анализа кернов пласта Д1 из скв.1283 Туймазинского месторождения, проведенного в лаборатории физики пласта ВНИИ (Ф.И. Котяхов, Ю.С. Мельникова и др.). Эти результаты (табл.1) особенно показательны потому, что исследование керна намечалось и проводилось по специальному плану и был обеспечен высокий вынос его из пласта. Но аналогичные данные имеются и по другим месторождениям.
Многочисленные лабораторные исследования вытеснения нефти водой из образцов керна показывают, что нефтеотдача их зависит от проницаемости (чем она выше, тем больше коэффициент вытеснения). Это вполне естественно. Как уже отмечалось, исследованиями В.М. Березина для девонских песчаников Туймазинского месторождения установлено, что при увеличении проницаемости от 70 до 1080 мд коэффициент вытеснения изменяется от 0,57 до 0,77. Исходя из представления опережающего оттеснения нефти фильтратом раствора из-под долота в глубь пласта, следовало бы ожидать такую же зависимость степени промывки керна от их проницаемости, т.е. остаточная нефтенасыщенность менее проницаемого керна должна была бы быть выше нефтенасыщенности более проницаемого керна.
Как видно из рис.2, довольно четко отмечается, что с увеличением проницаемости кернов нефтенасыщенность их увеличивается, а водонасыщенность уменьшается. Содержание хлоридов в воде из кернов свидетельствует о меньшей степени промывки высокопроницаемых кернов и более слабом разбавлении погребенной воды фильтратом раствора.
Эти результаты явно противоречатпредставлению промыва кернов вследствие опережающего оттеснения нефти из-под долота при выбуривании.
Физические свойства образцов керна из пластов Д1 и Д2 Туймазинского месторождения, выбуренных с раствором на водной основе (скв.1283)
Глубина, м | Пористость,% | Проницаемость,мд | Водонасыщенность | Нефтенасыщенность | Суммарная водонефтенасыщенность | Среднийрадиуспор,мк | Удельная поверхностьсм2/см3 | Концентрацияхлоридов,% |
% от объма пор | ||||||||
16281629 | 21,4 | 927 | 27,9 | 20,5 | 48,5 | 5,9 | 720 | 1,08 |
16281629 | 23,3 | 1245 | 23,3 | 26,7 | 50,0 | 6,5 | 700 | 0,787 |
16281629 | 19,5 | 627 | 34,4 | 22,6 | 57,0 | 5,1 | 760 | 0,66 |
16281629 | 17,6 | 483 | 24,8 | 23,6 | 48,4 | 6,2 | 740 | 1,01 |
1629,91631 | 21,8 | 610 | 33,13 | 32,5 | 65,7 | 4,7 | 900 | 0,723 |
1629,91631 | 22,6 | 890 | 42,0 | 25,8 | 67,8 | 5,6 | 790 | 0,599 |
1629,91631 | 23,0 | 735 | 34,0 | 25,4 | 59,54 | 5,1 | 895 | 0,63 |
1629,91631 | 24,5 | 1515 | 25,9 | 36,4 | 62,3 | 7,1 | 690 | 0,743 |
16391640 | 22,7 | 470 | 28,4 | 24,6 | 53,0 | 4,12 | 1105 | 0,475 |
16411642 | 23,6 | 403 | 18,8 | 15,5 | 34,3 | 3,7 | 1255 | 0,75 |
16411642 | 23,8 | 1450 | 26,2 | 38,1 | 64,4 | 6,9 | 715 | 0,478 |
16411642 | 24,5 | 1730 | 33,2 | 23,3 | 56,6 | 7,7 | 640 | 0,473 |
16411642 | 21,8 | 1370 | 18,0 | 38,8 | 56,9 | 7,1 | 610 | 1,21 |
16411642 | 22,3 | 1720 | 14,4 | 47,8 | 62,3 | 7,9 | 564 | 1,00 |
16601662 | 21,7 | 471 | 38,8 | 9,14 | 67,9 | 4,2 | 1030 | 0,55 |
16601662 | 21,7 | 552 | 28,1 | 16,5 | 45,2 | 4,5 | 950 | 0,89 |
16601662 | 22,1 | 70 | 32,1 | 30,2 | 62,8 | 1,6 | 2720 | 0,345 |
16601662 | 22,6 | 542 | 23,7 | 34,1 | 63,9 | 4,45 | 1030 | 0,539 |
16641666 | 25,5 | 1337 | 15,5 | 37,6 | 53,1 | 6,5 | 780 | 3,27 |
16671669 | 23,7 | 335 | 31,4 | 31,2 | 62,6 | 3,4 | 1400 | 0,607 |
1673,61675 | 22,4 | 275 | 41,6 | 15,45 | 57,05 | 3,1 | 1430 | |
1673,61675 | 23,0 | 409 | 35,5 | 15,8 | 51,3 | 3,8 | 1210 | 0,444 |
Низкую водонасыщенность кернов (в среднем 20-35%) и суммарную нефте-водонасыщенность кернов (в среднем 50-65%) также невозможно объяснить указанной схемой промыва. Суммарная нефте-водонасыщенность кернов на забое составляет 100% от объема пор. При выносе кернов на поверхность она может быть снижена лишь за счет выделения и расширения газа из остаточной нефти. Но если перенасыщенность кернов на забое составляет всего 25-30%, то газ из этой нефти не может вытеснить 35-50% от объема пор жидкости из гидрофильных кернов и тем более воды, которая удерживается в порах капиллярными силами.
И, наконец, невозможность промыва кернов за счет опережающего оттеснения нефти из-под долота фильтратом раствора становится очевидной из сопоставления скоростей бурения и водоотдачи глинистых растворов. Водоотдача обычно применяемых при бурении растворов составляет 5-12 см3за 30 минчерез поверхность в 75 см2. Через 1 см2 поверхности забоя водоотдача раствора с учетом большого перепада давления между забоем и пластом не превышает 0,2-0,3 см3. При пористости пласта 20% и коэффициенте вытеснения 0,5 скорость водоотдачи глинистого раствора в пласт будет не более 4-6 см/чтогда как долото при бурении в продуктивном пласте проходит со скоростью не менее 5-6 м/ч. Как видно, скорость проходки долота не менее чем в 100 раз выше скорости водоотдачи раствора. Поэтому керн, выбуриваемый из пласта, никак не может быть промыт фильтратом раствора прежде, чем он войдет в керновую трубу.
Следовательно, промывка кернов фильтратом глинистого раствора происходит после его выбуривания, в стволе скважины, до выноса на поверхность. Процесс этот может осуществляться только под действием капиллярных сил, обусловливающих проникновение фильтрата раствора в керн, а нефти из керна в окружающий раствор. В зоне, где давление в скважине становится ниже давления насыщения, одновременно с капиллярной пропиткой происходят выделение газа из нефти и дополнительное вытеснение ее.
Таким образом, вода в керн внедряется только под действием капиллярных сил, а нефть из керна вытесняется вследствие совместного действия капиллярных сил и энергии расширяющегося газа. Исходя из такого процесса промывки кернов, становятся понятными и объяснимыми все отмеченные особенности нефтенасыщенности и водонасыщенности кернов в зависимости от проницаемости (рис.2).
3. Наиболее показательный и доступный для контроля процесс капиллярной пропитки водой нефтяного пласта наблюдается при простое или консервации обводненных эксплуатационных скважин.
В промысловой практике весьма распространены случаи, когда остановленные сильно обводненные скважины через некоторое время оказываются полностью заполненными нефтью. Бесспорно, что процесс этот протекает при встречном движении нефти и воды и всегда в нем преобладают капиллярные силы. Но когда в период простоя одних скважин другие скважины на залежи продолжают работать, можно предположить, что поступление нефти в простаивающие скважины происходит вследствие продолжающегося движения нефти в пласте к действующим скважинам, а не под действием капиллярных сил. Поэтому убедительными и однозначными данными, свидетельствующими о капиллярном характере замещения в скважинах воды нефтью, могут служить результаты по скважинам, когда совсем не было отбора нефти из залежи, т.е. в период консервации их.