2) традиционные методы экономической статистики: методы средних и относительных величин, группировки, графический, индексный, элементарные методы обработки рядов динамики. Эти методы широко используются в финансовом менеджменте;
3) математико-статистические методы изучения связей: корреляционный анализ, регрессионный анализ, дисперсионный анализ, современный факторный анализ и др.;
4) методы экономической кибернетики и оптимального программирования: методы системного анализа, методы машинной имитации, линейное программирование и др. В настоящее время значение этих методов в финансовом менеджменте относительно невысоко; вместе с тем все большее распространение получают методы машинной имитации (в частности, для разработки и выбора различных вариантов действий в рамках оптимизации инвестиционной политики);
5) эконометрические методы: матричные методы, гармонический анализ, спектральный анализ, методы теории производственных функций, методы теории межотраслевого баланса;
6) методы исследования операций и теории принятия решений: методы теории графов, метод деревьев, методы байесовского анализа, теория игр, теория массового обслуживания, методы сетевого планирования и управления. Наряду с эконометрическими эти методы не получили широкого распространения в управлении финансами. Комплексное использование данных методов для решения текущих и перспективных задач может существенно повысить эффективность финансового менеджмента.
Простой динамический анализ.
Каждое значение временного ряда может состоять из следующих составляющих: тренда, циклических, сезонных и случайных колебаний. Метод простого динамического анализа используется для определения тренда имеющегося временного ряда. Данную составляющую можно рассматривать в качестве общей направленности изменений значений ряда или основной тенденции ряда. Циклическими называются колебания относительно линии тренда для периодов свыше одного года. Такие колебания в рядах финансовых и экономических показателей часто соответствуют циклам деловой активности: резкому спаду, оживлению, бурному росту и застою. Сезонными колебаниями называются периодические изменения значений ряда на протяжении года. Их можно вычленить после анализа тренда и циклических колебаний. Наконец, случайные колебания выявляются путем снятия тренда, циклических и сезонных колебаний для данного значения. Остающаяся после этого величина и есть беспорядочное отклонение, которое необходимо учитывать при определении вероятной точности принятой модели прогнозирования.
Метод простого динамического анализа исходит из предпосылки, что прогнозируемый показатель (Y) изменяется прямо (обратно) пропорционально с течением времени. Поэтому для определения прогнозных значений показателя Y строится, например, следующая зависимость:
Y(t)=a+b*t
где t - порядковый номер периода.
Параметры уравнения регрессии (a, b) находятся, как правило, методом наименьших квадратов. Существуют также другие критерии адекватности ( функции потерь), например метод наименьших модулей или метод минимакса. Подставляя в формулу (1) нужное значение t, можно рассчитать требуемый прогноз.
Многофакторный регрессионный анализ
Метод применяется для построения прогноза какого-либо показателя с учетом существующих связей между ним и другими показателями. Сначала в результате качественного анализа выделяется k факторов (X1, X2,..., Xk), влияющих, по мнению аналитика, на изменение прогнозируемого показателя Y, и строится чаще всего линейная регрессионная зависимость типа
Y=A0+A1*X1+A2*X2+...+Ak*Xk
где Ai - коэффициенты регрессии, i = 1,2,...,k.
Значения коэффициентов регрессии (A0, A1, A2,..., Ak) определяются в результате сложных математических вычислений, которые обычно проводятся с помощью стандартных статистических компьютерных программ.
Определяющее значение при использовании данного метода имеет нахождение правильного набора взаимосвязанных признаков, направления причинно-следственной связи между ними и вида этой связи, которая не всегда линейна. Влияние этих элементов на точность прогноза будет рассмотрено ниже.
Прогнозирование на основе пропорциональных зависимостей
Основой для разработки метода пропорциональных зависимостей показателей послужили две основные характеристики любой экономической системы - взаимосвязь и инерционность.
Одной из очевидных особенностей действующей коммерческой организации как системы является естественным образом согласованное взаимодействие ее отдельных элементов (как качественных, так и поддающихся количественному измерению). Это означает, что многие показатели, даже не будучи связанными между собой формализованными алгоритмами, тем не менее изменяются в динамике согласованно. Очевидно, что если некая система находится в состоянии равновесия, то отдельные ее элементы не могут действовать хаотично, по крайней мере вариабельность действий имеет определенные ограничения.
Вторая характеристика - инерционность - в приложении к деятельности компании также достаточно очевидна. Смысл ее состоит в том, что в стабильно работающей компании с устоявшимися технологическими процессами и коммерческими связями не может быть резких "всплесков" в отношении ключевых количественных характеристик. Так, если доля себестоимости продукции в общей выручке составила в отчетном периоде 70%, как правило, нет основания полагать, что в следующем периоде значение этого показателя существенно изменится.
Метод пропорциональных зависимостей показателей опирается на тезис о том, что можно идентифицировать некий показатель, являющийся наиболее важным с позиции характеристики деятельности компании, который благодаря такому свойству мог бы быть использован как базовый для определения прогнозных значений других показателей в том смысле, что они "привязываются" к базовому показателю с помощью простейших пропорциональных зависимостей. В качестве базового показателя чаще всего используется либо выручка от реализации, либо себестоимость реализованной (произведенной) продукции.
Последовательность процедур данного метода такова:
1) Идентифицируется базовый показатель B (например, выручка от реализации).
2) Определяются производные показатели, прогнозирование которых представляет интерес (в частности, к ним могут относиться показатели бухгалтерской отчетности в той или иной номенклатуре статей, поскольку именно отчетность представляет собой формализованную модель, дающую достаточно объективное представление об экономическом потенциале компании). Как правило, необходимость и целесообразность выделения того или иного производного показателя определяются его значимостью в отчетности.
3) Для каждого производного показателя P устанавливается вид его зависимости от базового показателя: P=f(B). Чаще всего выбирается линейный вид этой зависимости.
4) При разработке прогнозной отчетности, прежде всего, составляется прогнозный вариант отчета о прибылях и убытках, поскольку в этом случае рассчитывается прибыль, являющаяся одним из исходных показателей для разрабатываемого баланса.
5) При прогнозировании баланса рассчитывают, прежде всего, ожидаемые значения его активных статей. Что касается пассивных статей, то работа с ними завершается с помощью метода балансовой увязки показателей, а именно, чаще всего выявляется потребность во внешних источниках финансирования.
6) Собственно прогнозирование осуществляется в ходе имитационного моделирования, когда при расчетах варьируют темпами изменения базового показателя и независимых факторов, а его результатом является построение нескольких вариантов прогнозной отчетности. Выбор наилучшего из них и использование в дальнейшем в качестве ориентира делаются уже с помощью неформализованных критериев.
Балансовая модель прогноза экономического потенциала предприятияСуть данного метода ясна уже из его названия. Баланс предприятия может быть описан различными балансовыми уравнениями, отражающими взаимосвязь между различными активами и пассивами предприятия. Простейшим из них является основное балансовое уравнение, которое имеет вид:
A = E + L
где А - активы, Е - собственный капитал, L - обязательства предприятия.
Левая часть уравнения отражает материальные и финансовые ресурсы предприятия, правая часть - источники их образования. Прогнозируемое изменение ресурсного потенциала должно сопровождаться: а) неизбежным соответствующим изменением источников средств; б) возможными изменениями в их соотношении. На практике прогнозирование осуществляется путем использования сложных балансовых уравнений и сочетания данного метода с другими методами прогнозирования.
Комбинированный метод
Описанные в предыдущих параграфах методы прогнозирования не случайно названы базовыми методами. Они являются основой любых моделей финансового прогнозирования, однако редко используются на практике в чистом виде. В большинстве случаев применяется некий комбинированный метод, сочетающий в себе приемы и алгоритмы нескольких из базовых. Это обусловлено наличием у каждого отдельного базового метода недостатков и ограничений, которые нейтрализуются при их комплексном использовании. Базовые методы в составе комбинированных взаимодополняют друг друга. Зачастую один из них рассматривается как инструмент дополнительного контроля результатов, полученных другими методами.
Комбинированный метод, исследуемый в данной работе, по приведенной классификации относится к методам, прогнозирующим формы отчетности (в укрупненной номенклатуре статей). В прогнозировании учитывается не только индивидуальная динамика статей, но и взаимосвязь между отдельными статьями как внутри одной формы отчетности, так и между различными формами. На рисунке 1 показана связь данного метода с базовыми. В качестве результата прогнозирования получают баланс и отчет о прибылях и убытках в предстоящем периоде в укрупненной номенклатуре статей, описанные в предыдущем параграфе.
Далее для описания комбинированного метода будут использованы следующие условные обозначения:
ВА - внеоборотные активы; ТА - текущие активы; СК - собственный капитал; КЗ - величина кредиторской задолженности; ТТА - длительность оборота текущих активов; ТКЗ - средний срок погашения кредиторской задолженности; В - выручка от реализации; П - прибыль, остающаяся в распоряжении организации; n - последний отчетный период; n+1 - прогнозируемый период.
Составление прогнозной отчетности начинают с определения ожидаемой величины собственного капитала. Уставный, добавочный и резервный капиталы обычно меняются редко (если только в прогнозируемом периоде не планируется осуществить очередную эмиссию акций), поэтому в прогнозный баланс их можно включить той же суммой, что и в последнем отчетном балансе. Таким образом, основным элементом, за счет которого изменяется сумма собственного капитала, является прибыль, остающаяся в распоряжении организации. Размер прибыли можно рассчитать по методу пропорциональных зависимостей, исходя из величины коэффициента рентабельности продаж РП в будущем периоде, который равен отношению прибыли к выручке от реализации:
РП = П / В
Прогнозная величина данного показателя, а также выручки от реализации определяются методом авторегрессии на основании их индивидуальной динамики в предыдущих периодах. Здесь следует заметить, что гораздо более надежный прогноз величины выручки от реализации может быть получен экспертными оценками специалистов предприятия, базирующимися на прошлых объемах продаж, рыночной конъюнктуре, производственных мощностях, ценовой политике и т. д. Однако, такого рода оценки, как правило, недоступны внешнему аналитику, имеющему в своем распоряжении только публичную отчетность предприятия. Итак, величина собственного капитала в будущем периоде определяется, как его величина в последнем отчетном периоде, увеличенная на величину прогнозируемой прибыли (детерминированный факторный метод):
СКn+1 = CКn + П
Далее определятся потребность в собственном оборотном капитале ПСОК, определяемом как необходимая часть собственного капитала, которая направляется на формирование оборотных (текущих) активов:
ПСОК = СК - ВА
Уравнение является частным случаем балансового уравнения, поскольку отражает равенство между собственным капиталом, как источником формирования средств, и теми видами активов, на формирование которых он направляется. Таким образом, фактически здесь используется балансовый метод прогнозирования. Величина внеобортных активов в прогнозном периоде определяется с помощью метода авторегрессии.
Следующим шагом будет определение величины кредиторской задолженности в прогнозном периоде КЗn+1, которая связана с величиной ПСОК. Действительно, кредиторская задолженность является кредитом поставщиков предприятию и, поэтому, должна рассматриваться как источник финансирования. Вследствие разрыва в сроках погашения кредиторской задолженности и оборота оборотного капитала, возникает потребность в дополнительном финансировании, то есть ПСОК. Определим вид зависимости между величинами КЗ и ПСОК.
Если заемные средства в виде кредиторской задолженности предоставляются на срок, более короткий, чем длительность производственно-коммерческого цикла, то платежи по обязательствам могут осуществляться лишь при условии, что предприятие располагает достаточным собственным оборотным капиталом. Величина потребности в этом источнике финансирования определяется временем между окончанием использования кредита поставщиков и окончанием производственно-коммерческого цикла (периода оборота текущих активов) (ТТА - ТКЗ), а также величиной предстоящих платежей в единицу времени П/Д:
ПСОК = (ТТА - ТКЗ)*П / Д
С другой стороны, для оборачиваемости кредиторской задолженности, по определению имеем:
ОбКЗ = П / КЗ
где П - сумма платежей кредиторам.
Тогда средний срок погашения задолженности будет равен:
ТКЗ = Д/ ОбКЗ = КЗ*Д / П
где Д - длительность отчетного периода.
Исключая из формул величину П / Д, имеем:
ПСОК = КЗn+1*(ТТА - ТКЗ)/ ТКЗ
Таким образом, потребность в собственном оборотном капитале определяется величиной кредиторской задолженности, длительностью оборота капитала, вложенного в текущие активы, а также сроком погашения кредиторской задолженности. Величина ПСОК сокращается при уменьшении периода оборота текущих активов. В случае, когда ТТА
где обозначает среднюю за отчетный период величину текущих активов.
Тогда длительность оборота текущих активов будет равна:
ТТА = Д/ ОбТА = *Д / В
где Д - длительность отчетного периода.
С другой стороны:
= (ТА(n) + ТА(n+1))/2
Из этих формул имеем:
ТА(n+1) = 2* В*ТТА/ Д - ТА(n)
Подставляя уже известные нам величины в правую часть формулы, мы определим прогнозную величину текущих активов ТА(n+1) (детерминированный метод).
Итак, для окончательного построения прогнозных форм отчетности в укрупненной номенклатуре статей нам осталось определить величины кредиторской задолженности и кредитов в пассиве баланса. Это делается по следующей схеме. Определяем величину валюты баланса как сумму величин текущих и внеоборотных активов. Затем рассматриваем определенную нами ранее по формуле (16) максимальную величину кредиторской задолженности КЗn+1. В зависимости от ее величины, прогнозирование завершается одним из двух вариантов:
Если сумма КЗn+1 и величины собственного капитала превышает валюту баланса, то величина кредиторской задолженности уменьшается и принимается равной разности между валютой баланса и величиной собственного капитала. В этом случае предприятию достаточно собственных источников финансирования, поэтому в строке "Кредиты и займы" ставим нуль. Здесь нами снова используется базовый балансовый метод увязки показателей, являющийся составной частью описываемого комбинированного метода.
Если же собственных источников недостаточно для удовлетворения потребности в финансировании (сумма КЗn+1 и величины собственного капитала меньше валюты баланса), то погашение обязательств перед кредиторами возможно лишь при условии привлечения дополнительных финансовых ресурсов - кредитов банка. Это отразится на длительности производственно-коммерческого цикла. Замедлится оборачиваемость средств из-за роста себестоимости, в которую теперь будут входить и банковские проценты за пользование кредитом. Это приведет к увеличению разрыва между сроком оборота текущих активов и периодом погашения кредиторской задолженности. Следовательно, увеличится совокупная потребность в финансировании ПФ, представленном собственным капиталом и банковскими кредитами.
Исследуемый в данной работе комбинированный метод - один из многих принципиально возможных для построения прогнозных форм отчетности. Очевидно, что выводы по сравнению между собой различных методов финансового прогнозирования следует делать на основе сравнения точности получаемых прогнозов. Теоретические вопросы, связанные с определением точности прогнозных моделей, рассматриваются в следующем параграфе.
Список используемой литературы
1. Багриновскт К.Л., Рубцов В.А. Модели и методы прогнозирования и долгосрочного планирования: Учеб. пособие. М., 2003.
2. Бланк И. А. Основы финансового менеджмента. М., 2002.
3. Бобылева А. З. Финансовый менеджмент. Москва, 2003.
4. Ворст, П. Ревентлоу. Экономика фирмы. М.: Высшая школа, 1993.
5. Добров В. Н., Крышенинников В. И., Финансирование и кредитование в промышленности. - М., 1991.
6. Основы предпринимательского дела. /Под. рук. Д. Э. Н. профессора Осипова Ю. М. - М., 1992.
7. Современная экономика. /Под ред. Мамедова О. Ю. - Ростов на Дону, 1996.
8. Стратегическое планирование: Учебник /Под ред. Э.А. Уткина. М.: Тандем, 2001.
9. Харламова Г. В, Экономический анализ финансово-хозяйственной деятельности предприятий. - Харьков, 2003.
10. Хелферт Э, Техника финансового анализа, М.: Юнити, 2002.
11. Шим Д. К. Сигел Д. Г. Финансовый менеджмент. Москва, 1996.
12. Экономика предприятия. / Под. ред. проф. В. Я. Горфинкеля. - М., 2003.
13. Экономика предприятия. / Под. ред. проф. И. О. Волкова. - М.:ЮНИТИ - ДАНА, 2003