Несмотря на накопленный опыт в области тепловых методов воздействия на пласты, для отечественной нефтяной промышленности представляется крайне необходимым поиск и создание новых более совершенных технологий разработки залежи тяжелый нефтей и битумов. Это обусловлено как структурой «нетрадиционных» запасов нефти, так и необходимостью более полной выработки запасов углеводородов при достаточной высокой эффективности их добычи. Как уже отмечалось выше, более 2/3 извлекаемых запасов «нетрадиционных» углеводородов в России приходится на битумы, а не на тяжелую нефть. Геологические ресурсы природных битумов на порядок превышают извлекаемые запасы тяжелой нефти. Для разработки таких месторождений с достижением приемлемыми значениями коэффициентов извлечения необходимы новейшие тепловые методы, превосходящие по эффективности уже традиционные технологии теплового воздействия.
Совершенствование методов разработки высоковязких нефтей и природных битумов
высоковязкий нефть разработка месторождение
Для исключения убыточности и нерентабельности разработки месторождений высоковязких нефтей и природных битумов в России и за рубежом ведутся работы, направленные на совершенствование и создание технологий повышения нефтеотдачи, позволяющих разрабатывать вышеуказанные месторождения с наибольшей экономической эффективностью.
В сфере разработки месторождений трудноизвлекаемого сырья, необходимо отметить деятельность таких компаний как «Удмуртнефть», «Татнефть», «РИТЭК».
После создания в 1973 г. в Удмуртии ПО «Удмуртнефть» первые попытки разработки основных месторождений с применением традиционных способов – редкими сетками скважин с заводнением – не дали положительных результатов. Скважины имели низкие дебиты, наблюдались быстрые прорывы закачиваемой воды по наиболее проницаемым пластам и пропласткам, не достигались проектные отборы и величины текущей нефтеотдачи, резко снижалась рентабельность освоения месторождений. Из-за применения в расчетах упрощенных гидродинамических моделей без учета осложняющих факторов оказались существенно завышенными проектные технико-экономические показатели разработки и особенно значения конечной нефтеотдачи, которые принимались проектами в пределах 34–45%.
Поэтому уже в 1975 г. были начаты масштабные комплексные научные исследования по созданию принципиально новых технологий повышения нефтеотдачи. Были организованы целенаправленные теоретические и экспериментальные исследования особенностей механизма нефтеотдачи в сложных трещинно-порово-кавернозных коллекторах с нефтями повышенной и высокой вязкости.
Накопленный мировой опыт разработки залежей с высоковязкими нефтями, содержащимися главным образом в терригенных коллекторах, доказывал эффективность использования тепловых методов (воздействие горячей водой – ВГВ и паротепловое воздействие – ПТВ). Однако для карбонатных коллекторов с тяжелыми вязкими нефтями подобных разработок не было. В Удмуртии разработка технологий освоения трудноизвлекаемых запасов в карбонатных коллекторах велась в двух направлениях: 1) поиск и создание технологий физико-химического воздействия на пласт, 2) тепловое воздействие на пласт.
Итогом целенаправленных научно-практических исследований стало создание принципиально новых технологий и способов рациональной разработки и повышения нефтеотдачи для решения проблемы эксплуатации сложнопостроенных месторождений с карбонатными коллекторами. Не имеющие аналогов в мировой практике термополимерные и термоциклические технологии воздействия на пласт научно обоснованы на уровне изобретений и патентов, испытаны и широко внедрены в производство. Если традиционно применяемые технологии заводнения в карбонатных коллекторах с нефтями повышенной и высокой вязкости могли обеспечить конечную нефтеотдачу не более 20–25%, то новые технологии позволяют довести нефтеотдачу до 40–45%.
Сущность нового подхода заключается в том, что при воздействии растворами полимера (полиакриламид концентрации 0,05–0,10%) удается существенно выравнивать профили приемистости в нагнетательных скважинах, а главное – значительно увеличивать коэффициент охвата неоднородного коллектора рабочим агентом. За счет выравнивания соотношения вязкостей вытесняемой и вытесняющей фаз происходит гашение вязкостной неустойчивости фронтов вытеснения – неконтролируемых прорывов воды к добывающим скважинам.
Исследования и последующий промышленный опыт показали, что технологии полимерного воздействия повышают в 1,5–1,7 раза конечную текущую нефтеотдачу по сравнению с таковой от воздействия необработанной водой, т.е. при заводнении существенно ниже динамика обводнения добывающих скважин и выше их рабочие дебиты. Разработанная новая технология термополимерного воздействия (ТПВ) предусматривает закачку в пласт нагретого до 80–90 °С полимерного раствора той же концентрации, что и холодный раствор.
Существенное улучшение механизма извлечения нефти из пластов при ТПВ заключается в том, что закачиваемый горячий полимерный раствор после прохождения по пласту снижает свою температуру до пластовой, тем самым увеличивая свою вязкость на фронте вытеснения, что приводит к его выравниванию и увеличению коэффициента охвата пласта. Причем этот процесс в пласте оказывается саморегулируемым, что особенно важно в трещиноватых коллекторах. На Мишкинском и Лиственском месторождении месторождениях дополнительная добыча нефти за счет технологии ТПВ превысила 560 тыс. т. Так, 1 т сухого полимера позволяет дополнительно добывать 263 т нефти.
В целях совершенствования технологии ТПВ была разработана новая технология термополимерного воздействия с добавлением полиэлектролита (ТПВПЭ), способствующего замедлению возможной деструкции полимера и более глубокому проникновению его в пласт. Кроме того, используя данную технологию, удалось существенно сократить расход дорогостоящего полимера (на 15–20%), снизив тем самым себестоимость добытой нефти. Дальнейшее совершенствование технологии ТПВ шло по пути значительного снижения энергоемкости и ресурсосбережения, что привело к разработке технологии циклического внутрипластового полимерно-термического воздействия (ЦВПТВ). Здесь закачка теплоносителя и раствора полимера осуществляется уже в несколько циклов, после чего предусматривается закачка обычной воды. Цикличность процесса ЦВПТВ приводит к увеличению охвата пласта рабочим агентом, интенсификации капиллярных и термоупругих эффектов и сокращению расхода химреагента. Реализация проекта началась на Ижевском месторождении, что позволило дополнительно добыть более 400 тыс. т нефти и достичь конечной нефтеотдачи 35,4 вместо 11,5% при существующем ныне режиме истощения. Применение технологии ЦВПТВ на Лиственском месторождении даст возможность получить дополнительно 2,3 млн. т нефти, увеличить извлечение нефти на 8% в сравнении с таковым при холодном полимерном воздействии (ХПВ). В качестве теплоносителей для нагнетания в пласт с целью повышения нефтеотдачи в настоящее время используется перегретая горячая вода (t=260 °C).
Термические методы на месторождениях высоковязких нефтей обеспечивают кратное увеличение нефтеотдачи относительно таковой при естественных режимах разработки и методах заводнения. В механизме нефтеизвлечения выделяются три основных фактора:
– улучшение отношения подвижностей нефти и воды;
– тепловое расширение пластовой системы;
– улучшение проявления молекулярно-поверхностных сил в пласте.
Внедрение технологий термического воздействия было начато на Гремихинском месторождении. Основной объект разработки – залежь пласта А4 башкирского яруса среднего карбона, со сложными трещинно-порово-кавернозными крайне неоднородными коллекторами. Режим пласта упруговодонапорный. Было ясно, что эффективность разработки месторождения традиционными способами будет низкой. Нефтеотдача, на естественном режиме составляет не более 10–12%. Поэтому в 1983 г. были начаты экспериментальные работы по нагнетанию в пласт теплоносителя: горячей воды с температурой на устье скважин 260 °С.
Однако эта технология весьма энергоемка, требует крупных материальных затрат, поэтому специалистами ОАО «Удмуртнефть» совместно с учеными ряда институтов проводились работы по созданию принципиально новых ресурсо и энергосберегающих технологий, позволяющих вывести заведомо нерентабельные запасы высоковязких нефтей Гремихинского месторождения в разряд прибыльных.
В результате созданы, запатентованы и внедрены в производство принципиально новые высокоэффективные технологии теплового воздействия: импульсно-дозированное тепловое воздействие (ИДТВ), импульсно-дозированное тепловое воздействие с паузой (ИДТВ(П), теплоциклическое воздействие на пласт (ТЦВП) и его модификации.
Сущность технологии ИДТВ заключается в многократном воздействии на матрицу попеременно и строго рассчитанными циклами «нагрев – охлаждение», что способствует более полному вытеснению нефти при поддержании в пласте так называемой «эффективной температуры». Это понятие положено в основу определения необходимых объемов теплоносителя и холодной воды для обеспечивания значительного сокращения энерго- и ресурсозатрат. Интенсификация добычи нефти в режиме ИДТВ определяется ускорением процесса охвата объекта разработки тепловым воздействием.
По сравнению с ПТВ и ВГВ циклический процесс позволяет использовать теплогенерирующие установки для большого числа нагнетательных скважин, так как в периоды нагнетания порции холодной воды теплоноситель нагнетается в другие скважины. При неоднократном повторе циклов смены температур, т.е. при термоциклическом воздействии на матрицу, величина нефтеотдачи достигает 37%, что на 9% выше, чем при заводнении.
В техническом исполнении ИДТВ особых дополнительных конструкций и установок не требует. Применяются стандартные паронагнетательные скважины, внутрискважинное устьевое и наземное оборудование.