Смекни!
smekni.com

Обработка результатов по данным геофизических исследований скважин (стр. 7 из 11)

Диаграммы бокового микрокаротажа используются в комплексе с диаграммами бокового каротажа при благоприятных условиях лишь для качественного выделения пластов-коллекторов. Что же касается количественных определений, то для этой цели данные бокового микрокаротажа не применяются, так как сопротивления плотных и нефтенасыщенных пластов значительно превышают верхний разрешающий предел (150–200 Ом*м) регистрирующей аппаратуры.

Индукционный каротаж (ИК) проводится, как правило, для детальных исследований продуктивных интервалов в скважинах, вскрытых на непроводящей электрический ток промывочной жидкости.Измерения выполнялись аппаратурой АИК. Диаграммы ИК в комплексе с другими методами используются для качественной интерпретации [23].

Для количественных определений сопротивления пластов в условиях Припятского прогиба метод неприменим, так как удельное электрическое сопротивление подавляющего большинства нефтенасыщенных пластов находится в пределах от нескольких сотен до тысяч Ом метров, а в диапазоне rк >50 Ом*м аппаратура обладает низкой разрешающей способностью.

Гамма-каротаж является одним из основных видов исследований. Кривые естественной радиоактивности регистрировались в масштабах 0,5 – 1,0 мкР/час на 1 см. Скорость записи от 300 м/час до 400 м/час. Индикаторами служат сцинтилляционные счетчики с кристаллами йодистого натрия, активированного таллием, с размером кристалла 30*30, 30*40, 30*70, 40*40 мм. Измерения проводились аппаратурой ДРСТ – 1, ДРСТ – 3, СРК.

Качество диаграмм и разрешающая способность метода позволяют использовать кривые ГК для корреляции и литологического расчленения разрезов, а также определения глинистости пластов.

Нейтронный гамма-каротаж является методом, используемым для определения пористости пород. Размер зонда 60 см. В скважинах ПО "Белоруснефть" кривые НГК регистрировались в масштабах: 0,1-0,2 ст. ед. на 1 см (1:200), 0,1 – 0,6 ст. ед. на 1 см (1:500). В скважинах Управления геологии кривые НГК регистрировались в масштабах 0,1-0,2 усл. ед. на 1 см (1:200) и 0,4 усл. ед. на 1 см (1:500). Скорость записи от 300 до 400 м/час. Измерения проводились аппаратурой ДРСТ – 1, ДРСТ – 3, СРК. Индикаторами служат сцинтилляционные счетчики NaJ(Tl), с размером кристалла 30*30, 30*40, 40*40 мм. В качестве излучателей использовались плутониево-бериллиевые источники мощностью 4,3–5,2*106 n/с [10].

Поскольку нейтронный гамма-каротаж является одним из основных методов, используемых для определения пористости, то к этому методу предъявляются высокие требования в отношении качества и стандартизации.

Значения НГК (в имп/мин), получаемые в результате эталонировки для конкретного прибора с определенным источником нейтронов, используются при установке масштабов диаграмм в стандартных единицах.

Качество диаграмм и разрешающая способность метода позволяют использовать кривые НГК для корреляции и литологического расчленения разрезов скважин [24].

Кроме того, в условиях Припятского прогиба НГК является основным методом, применяемым для определения пористости пластов и выделения эффективных толщин.

Импульсный нейтрон-нейтронный каротаж применяется с июля 1978 года. Измерения выполнены аппаратурой ИГН – 7 при скорости регистрации до 400 м/час. Размер зонда 30 см. Масштаб записи кривых 75–9600 имп/мин, Тзад.=600–900 мкс, То=300 мкс.

Однако для времени проведения исследований характерно отсутствие отработанной методики и несовершенство применяемой измерительной аппаратуры, поэтому в настоящее время количественная интерпретация, имеющихся в наличии, материалов ИННК (определение коэффициентов пористости и нефтенасыщенности) не дает положительных результатов.

Акустический каротаж по скорости и затуханию включен в комплекс с 1979 года и проводится во всех скважинах. Исследования выполняются посредством аппаратуры СПAК-2М, СПAК-4, УЗБА-21. Размеры зондов: И20,5И11,5П; И20,4И11,2П; И20,85 И11,05П; И20,51 И12,3П.

В процессе измерений регистрируется интервальное время прохождения волны от излучателей к приемнику (Т1 и Т2), интервальное время прохождения волн между излучателями (Δt), амплитуды первых вступлений волн от двух излучателей (α1 и α 2) и логарифмы отношений этих амплитуд (α). Масштаб записи кривых Т1 и Т2 —50 мкс/м на 1 см; Δt=10 мкс/м на 1 см; α 1, α 2 — 0,5; 1; 1,5; 2,5; 5 v на 1 см, α — 1,25; 1,5; 2,5 дб на 1 см. Скорость записи не превышает 1200 м/час.

Кривые акустического каротажа используются для литологического расчленения разреза, выделения пластов коллекторов и определения объема их емкостного пространства.

Кавернометрия в скважинах проводится с целью измерения диаметра скважин и контроля их технического состояния.

Кавернограммы регистрируются в масштабах 1:2.5 см/см. Скорость записи не превышает 2000 м/час. В качестве измерительных приборов используются каверномеры типов СКП - 1, СКО, АГАТ-ЭК [10].

Кавернограммы используются для контроля технического состояния стволов скважин, корреляции разрезов, литологического расчленения пород и при количественной интерпретации данных других геофизических методов.

Кроме этого, в процессе обработки материалов ГИС для определения подсчетных параметров проводилась повторная проверка качества геофизических материалов. Достоверность измерений, выполненных различными геофизическими методами, оценивалась, главным образом, путем сопоставления с данными повторных записей соответствующих кривых.

В результате проверок установлено, что диаграммы бокового каротажа хорошего качества. Расхождение в значениях сопротивлений (rк) не превышает 5%.

Для оценки качества материалов МБК надежных критериев нет. Но если руководствоваться лишь степенью сопоставимости повторных замеров, качество диаграмм МБК следует считать удовлетворительным. Однако это можно утверждать только в отношении участков разреза, характеризующихся удельным электрическим сопротивлением не более 150 – 200 Ом*м (верхний предел разрешающей способности измерительной аппаратуры). Поскольку электрические сопротивления плотных и нефтенасыщенных пластов превышают этот предел и кривая МБК напротив них не дифференцирована, то для оценки нефтенасыщенности пластов этот метод не применяется.

Кривые гамма-каротажа, в основном, хорошего качества, расхождение значений естественной радиоактивности не превышает 5%.

Качество диаграмм НГК оценивалось путем сравнения записей масштабов 1:200 и 1:500, а также данных повторных записей. Диаграммы, в основном, хорошего качества. Расхождение в показаниях не превышает 5%.

Кавернограммы преимущественно хорошего качества, погрешность измерения диаметров скважин не превышает 1,5 см [10].


6. ОБРАБОТКА И ИНТЕРПРЕТАЦИЯ ДАННЫХ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН

Основными задачами при изучении геологического разреза нефтяных и газовых скважин является:

1) расчленение разрезов на пласты различного литологического состава, определение мощностей и глубин залегания пластов;

2) выделение в разрезе коллекторов и оценка содержания в них нефти и газа [25].

Для решения этих задач широко применяют геофизические методы исследования скважин.

Литологическое расчленение производят по комплексу диаграмм различных геофизических методов. Литологический характер пород определяют по сумме геофизических признаков, установленных по диаграммам различных методов.

Для более точной характеристики литологического состава пород используют данные наиболее полного комплекса геофизических методов, объем которого определяется степенью изученности разреза, типом отложений и скважинными условиями измерений [26].

Для расчленения песчано-глинистого разреза необходимо дополнительно привлекать кривые гамма-метода и бокового метода.

Если вскрытый скважиной разрез представлен карбонатными породами, в комплекс измерений должен обязательно входить нейтронный или акустический методы, обеспечивающий выделение пористых карбонатных пород.

В продуктивных участках разреза, где есть или могут быть встречены нефтегазонасыщенные пласты, для детального изучения коллекторов нефти и газа необходимо дополнительно проводить боковые электрические зондирования, измерения микрозондами, каверномером и т.п.

Важной задачей геофизических исследований нефтяных и газовых скважин является выделение в их разрезах коллекторов и оценка характера их насыщения [26].

Коллекторы определяют, во-первых, по литологическому составу пород, слагающих разрезы. Если по геофизическим данным установлено, что пласты представлены песками, пористыми песчаниками или пористыми карбонатными породами, то такие пласты могут быть отнесены к коллекторам. Во-вторых, коллекторы выделяют по признаку фильтрации в них бурового раствора с образованием глинистой корки на стенки скважины и зоны проникновения в примыкающей скважине части пласта, в которой пластовые жидкости полностью или частично замещены фильтратом бурового раствора. Глинистая корка выявляется по сужению диаметра скважины на кавернограммах и по расхождению двух кривых кажущегося сопротивления на диаграммах микрозондов. Наличие в пласте зоны проникновения, удельное сопротивление которой отличается от удельного сопротивления пласта, устанавливают по данным бокового электрического зондирования, либо по замерам двумя зондами метода сопротивлений, один из которых имеет малый, а другой – большой радиусы исследования.

По данным геофизических методов уверенно выделяются неглинистые коллекторы с межзерновой пористостью (пески, песчаники, высокопористые карбонатные породы). В песчано-глинистых отложениях коллекторы выделяют по диаграммам естественных потенциалов. В условиях, обычно встречающихся на практике, когда минерализация пластовой воды больше минерализации бурового раствора, пласты неглинистых песков и песчаников, являющихся коллекторами, выделяются минимальными, а глины (непроницаемые пласты) – максимальными показаниями на диаграммах естественных потенциалов. Если буровой раствор в скважине сильно минерализован, коллекторы выделяются по диаграммам гамма-метода. На диаграммах гамма-метода глины отмечаются максимальными, песчаные пласты – минимальными показаниями [26].