Смекни!
smekni.com

Оценка методологического обеспечения бурения скважин (стр. 10 из 13)

-Литолого-тектонические и гидрогеологические задачи региональной геологии

-Детальное исследование разреза скважин

В геофизике используется метод искусственного теплового поля, он основан на различии тепловых св-в изучаемых сред. ИТП создают при помощи нагретой промывочной жидкости. Метод искусственного теплового поля позволяет решать следующие задачи: 1) определение термодинамических и газогидродинамических характеристик эксплуатируемых объектов 2) изучение технического состояния скважин.

Термограмма представляет кривую изменения естественных температур по разрезу скважины. Наклон кривой к оси глубин определяется величиной геотермического градиента. Среди осадочных пород наибольшее значение геотермического градиента соответствует глинам и аргиллитам, меньшее - неглинистым песчаникам и карбонатным породам. По термограмме можно выделить газоносные пласты. Они отмечаются интервалами пониженных температур, возникающих при охлаждении газа вследствие его расширения в момент поступления в скважину.

Термометрия исп-ся для определения высоты подъема цемента (не даёт оценки качеству затвердевания). Это основано на экзотермической реакции затвердевания цемента (выделяется теплота, и термометр эту теплоту улавливает).

45. Геофизические исследования, проводимые при проведении ПВР

Прострелочные работы:

1. перфорация обсадных колонн для вскрытия пластов

2. срезание в скважинах колонн и труб для их извлечения

3. отбор образцов ГП в скважинах

4. отбор проб жидкости и газа

Взрывные работы:

1. повышение продуктивности скважины

2. разобщение пластов

3. очистка фильтров

4. освобождение и извлечение труб из скважины при авариях

5. борьба с поглощениями ПЖ при бурении

6. ликвидация и тушение пожаров

Перфорацией называется процесс образования отверстий в обсадных трубах, цементном камне и пласте с помощью специальных скважинных стреляющих аппаратов — перфораторов. По типу пробивного элемента перфораторы подразделяются на беспулевые (кумулятивные) и пулевые. В практике прострелочных работ кумулятивная перфорация получила наибольшее распространение, так как она обеспечивает высококачественное вскрытие пластов в самых различных геологических и скважинных условиях. Основными элементами любого кумулятивного перфоратора являются взрывной патрон и электропроводка.

Отбор образцов со стенок скважины осуществляется при помощи стреляющих и сверлящих грунтоносов. Первый состоит из стального корпуса с пороховыми каморами, над которыми располагаются стволы. В пороховые каморы помещаются пороховые заряды с электровоспламенителями. В стволы вставляются полые цилиндрические бойки из прочной стали, крепящиеся к корпусу стальными тросиками. После установки грунтоноса в нужном интервале на электровоспламенитель подается ток. Пороховой заряд взрывается, и под действием давления пороховых газов боек с пяткой вылетает из ствола грунтоноса и внедряется в стенку скважины. При подъеме грунтоноса стальной тросик извлекает боек из стенки скважины вместе с образцом. Стреляющие боковые грунтоносы предназначены для отбора образцов сравнительно мягких пород (песков, рыхлых песчаников, мучнистых известняков и доломитов, глин) и характеризуются невысокой эффективностью (примерно 50—60 % бойков выносят образцы породы, остальные извлекаются пустыми).

Сверлящий грунтонос позволяет за один спуск отобрать от 5 до 15 образцов породы диаметром 20 мм и длиной до 50 мм. Затруднения в отборе образцов возникают при наличии на стенке скважины толстой глинистой корки, а также каверн. Наилучший эффект применения сверлящих грунтоносов получают в плотных породах после промывки и проработки скважины.

Билет 16

46. Разновидности электрического каротажа, решаемые задачи

Электрический каротаж (ЭК) – исследования горных пород, основанный на измерении параметров естественного или искусственного постоянного (квазипостоянного) электрического поля.

1. Метод потенциала самопроизвольной поляризации (ПС). Электрический каротаж, основанный на регистрации параметров естественного электрического поля, регистрирует потенциал электрического поля (ПС). Применяется для изучения естественного поля, как в открытом стволе, так и в обсаженной колонной скважине. Поскольку измерительный канал ПС в скважинном приборе представляет собой обычный вольтметр, то его метрологический контроль выполняется с помощью серийно выпускаемых средств измерения напряжения электрического тока. Изучение естественных электрических полей, возникающих в результате физико-химических процессов диффузии солей в растворах электролитов, фильтрации жидкости, окислительно-восстановительных реакций. Эти процессы порождают потенциалы диффузионные (главная роль в формировании полей), течения, окислительно-восстановительные.

2. Каротаж сопротивлений. Электрический каротаж сопротивлений основан на регистрации параметров постоянного (квазипостоянного) искусственного электрического поля. К геофизическим методам этого типа относятся следующие методы: - (БКЗ) - (БК) или метод сопротивления экранированного заземления (БК): сверху\снизу экранируют и ток течёт по ρП, куда до этого бы не потёк из-за ρП > ρВМ. Модификация – микроэкранированное заземление - Боковой микрокаротаж (БМК) - Микрокаротажное зондирование (МКЗ) - Каротаж вызванных потенциалов (ВП) - Токовая резистивиметрия (Рез). Измеряемой величиной во всех этих методах является удельное электрическое со-противление (УЭС) изучаемой среды. Единица измерения Ом-метр (омм).Метод кажущегося сопротивления (КС): ρК = K·ΔUMN/ I. AB – ток, MN – приём. Зонд длиной 0,4÷8 м. Модификация – метод микрозондов, метод резистивиметрии (определяют ρ раствора, чтобы потом учесть его влияние). Электромагнитные методы: на высокой частоте. Индукционный метод – до 60кГц. Метод волновой проводимости (ВМП) – до 30МГц. Диэлектрические методы. Измеряют ε (во сколько раз напряжённость ЭП в данном диэлектрике меньше напряжённости поля в вакууме).

47. Характеристика объекта исследования в скважине необсаженной колонной

ВНК: В необсаженных скв-х опр-ся: 1.по показателям КС обыч-х зондов большого размера в случае однородных высокопрониц-х пластов наб-ся четкая граница м/д водой и Н.(против Н-увел-е сопр-е, против воды – умен-е сопрот-е). Если проникновение р-ра глубокое, то возн-т затруднение. Против воды кривые совп-т, против Г-кривая умен-я (ее знач-я). По привышению показаний НГК (или ННК(Т)) большого зонда, по-срав-ю с малым зондом (мет-ка 2х –зондового НГК).ГВК: В не обсажен-й ска-не: так же как и у ВНК. 1. По мах показ-м КС зондов большого размера Методика временных замеров (метод НГК). В обсаженной скважине: 1.Сква-на обсажена, зона прон-я расформ-ся. 2.по увел-ю показ-й нейтр-го g-метода (НГК) или ННК. против Г –увел-е зн-е интен-ти, против воды - умен-е зн-е интенс-ти.ГНК: В обсаж-й или не обсаж-й сква-не: 1.По наличию «+» приращений показаний на кривых НГК или ННК(Т) по мет-ке врем-х замеров. против нефтеносной части пласта показ-я Ingили Innна разных кривых будут практически совпадать.

48. Вторичное вскрытие пластов-коллекторов, гидродинамическое совершенство скважин

Способы вскрытия пласта: а - открытый забой; б - забой, перекрытый хвостовиком колонны, перфорированным перед ее спуском; в - забой с фильтром; г - перфорированный забой. При открытом забое башмак обсадной колонны цементируется перед кровлей пласта. Затем пласт вскрывается долотом меньшего диаметра, причем ствол скважины против продуктивного пласта оставляется открытым.

Скважины с перфорированным забоем нашли самое широкое распространение (более 90% фонда). В этом случае пробуривается ствол скважины до проектной отметки. Перед спуском обсадной колонны ствол скважины и особенно его нижняя часть, проходящая через продуктивные пласты, исследуется геофизическими средствами. Результаты таких исследований позволяют четко установить нефте-, водо- и газонасыщенные интервалы и наметить объекты эксплуатации. После этого в скважину опускается обсадная колонна, которая цементируется от забоя до нужной отметки, а затем перфорируется в намеченных интервалах.

Пескоструйная перфораця. При гидропескоструйной перфорации разрушение преграды происходит в результате использования абразивного и гидромониторного эффектов высокоскоростных песчано-жидкостных струй, вылетающих из насадок специального аппарата - пескоструйного перфоратора, прикрепленного к нижнему концу насосно-компрессорных труб. Песчано-жидкостная смесь закачивается в НКТ насосными агрегатами высокого давления. В породе вымывается каверна грушеобразной формы, обращенной узким конусом к перфорационному отверстию в колонне. Размеры каверны зависят от прочности горных пород, продолжительности воздействия и мощности песчано-жидкостной струи. Медленно вращая пескоструйный аппарат или вертикально его перемещая, можно получить горизонтальные или вертикальные надрезы и каналы. В этом случае сопротивление обратному потоку жидкости уменьшается и каналы получаются примерно в 2,5 раза глубже. При пескоструйной перфорации НКТ испытывают большие напряжения.

Куммулятивная перфорация. Проведение вторичного вскрытия пласта кумулятивной перфорацией возможно при различных гидродинамических условий в скважине. Проведению процесса вторичного вскрытия происходит при депрессии, что исключает попадание в ПЗП жидкости вскрытия и механических примесей. В данном случае перфоратор спускается в скважину на трубах и устанавливается напротив интервала пласта. Перспективность применения ПНКТ с экон-кой точки зрения: - снижение прод-ти ремонта скважины в результате комбинирования технологических процессов вторичного вскрытия и спуска исп-ой компоновки; -окупаемость сверхзатрат на сервисные услуги по проведению перфорации за счет сокращения прод-ти ремонта скважины.