Смекни!
smekni.com

Уравнивание геодезических сетей сгущения упрощенным способом (стр. 2 из 5)

м

Итак, в этой задаче я решила два варианта прямой многократной засечки и вычислила координаты дополнительного пункта. Расхождения координат, полученных в первом и втором вариантах засечки оказались в допуске, поэтому за окончательное значение координат исходного пункта Р я приняла Х=5310,455 и Y=3040,655. При оценке точности полученных результатов получила следующие ошибки:

- среднюю квадратическую ошибку положения торчки Р для каждого варианта засечки: mp1=0,079 м, mp2=0,064 м

- среднюю квадратическую ошибку координат, полученных из двух вариантов засечки: MpCp=0,051 м


2. Вычисление координат дополнительного пункта, определенного обратной многократной засечкой

2.1 Общие указания и исходные данные

Обратная засечка – это задача по определению четвертого пункта по трем данным пунктам и двум измеренным при определяемом пункте углам.

Для контроля правильности решения задачи при определяемой точке измеряют третий угол между направлениями на один из первых трех пунктов и на четвертый данный пункт.

Таким образом, для решения задачи с контролем необходимо видеть из определяемой точки четыре пункта исходной сети и измерить при определяемой точке три угла.

При решении задачи я воспользовалась исходными данными, исправленными с учетом порядкового номера, которые приведены в таблице 3.

Таблица 3 – Исходные данные для решения обратной засечки.

название пункта координаты измеренные напункте Р направления
X Y
1 7105,31 3851,55 0
00’ 00”
2 6613,86 3816,43 59
06’ 36”
3 6653,66 2959,70 177
19’ 41”
4 7353,17 3210,20 273
10’ 38”

Порядок решения задачи:

1. составление схемы расположения определяемого и исходных пунктов

2. выбор наилучших вариантов засечки

3. решение наилучших вариантов засечки

4. оценка ожидаемой точности полученных результатов.

2.2 Составление схемы расположения определяемого и исходного пунктов

Составление схемы я произвела на листе миллиметровой бумаги формата А4. При этом оцифровала её в масштабе 1:10000. По координатам из таблицы 3 нанесла исходные пункты А, В, C, D (приложение Б). Искомый пункт Р нанесла по направлениям (по способу Болотова) на листе кальки формата А4 (приложение В).

2.3 Выбор наилучших вариантов засечки

Для выбора лучших вариантов засечки производятся те же действия, что и при прямой засечке:

- строятся инверсионные треугольники (вершинами этих треугольников будут только конечные точки отрезков ri)

- визуально определяются треугольники с большими площадями, и именно они выбираются для решения обратной засечки.

В моем варианте были выбраны треугольники 3-4-1 и 3-4-2 для решения.

2.4 Решение наилучших вариантов засечки

Вычисление координат дополнительного пункта, определенного обратной многократной засечкой, приведены в табл. 4.

Таблица 4 - Схема для вычислений обратной угловой засечки.

обозначение пунктов координаты - ∆XBC - ΔYBC
A XA YA αAP - tg αAP -
β2 ∆XBC ctg β2 ΔYBC
B XB YB αBP - tg αBP -
β3 ∆XCA ctg β3 ΔYCA
C XC YC - -
P XP YP YP’ ∆X0 tg αAP - tg αBP ΔY0

Для решения задачи сначала я определила дирекционный угол направления АР, принятого в качестве главного, по формуле Деламбра:

(5),

далее определяем дирекционный угол следующего направления:

(6).

После того, как определила дирекционные углы направлений АР и ВР, вычислила координаты точки Р по формулам Гаусса:

(7)

(8)

Для контроля вычислений применила формулу:

(9).

В формулах (5-9) обозначения соответствуют схеме, представленной на рисунке 2.


Рисунок 2 – Схема обозначений к вычислениям.

Решение задачи представлено в таблицах 5 и 6.

Таблица 5 – Решение обратной угловой засечки.

Обозначение пунктов координаты - -247,86 - 641,35
3 (A) 6653,66 2959,70 241
48’22”
- 1,865475 -
95
50’57”
699,51 -0,102443 250,50
4 (B) 7353,17 3210,20 337
39’19”
- -0,411042 -
182
40’19”
-451,65 21,427930 -891,85
1 (С) 7150,31 3851,55 - 0 - 0
P 6890,00 3400,58 3400,58 -10390,93 2,276517 -19384,02

Таблица 6 – Решение обратной угловой засечки.

Обозначение пунктов координаты - -739,31 - 606,23
3 (A) 6653,66 2959,70 241
48’18”
- 1,865398 -
95
50’57”
699,51 -0,102443 250,50
4 (B) 7353,17 3210,20 337
39’15”
- -0,411065 -
241
46’55”
39,8 0,536601 -856,73
2 (C) 6613,86 3816,43 - 0 - 0
P 6890,01 3400,59 3400,59 -656,53 2,276463 -1224,69

Координаты в двух вариантах различны, но расхождения не превышают 0,2 м, за окончательные значения координат принимаем их средние значения:

Среднее Х=6890,005

Среднее Y=3400,585.

2.5 Оценка ожидаемой точности результатов

Далее я вычислила среднюю квадратическую ошибку положения определяемого пункта:

(10),

где

- средняя квадратическая ошибка измерения углов (10''),

S – расстояния, измеренные по схеме, м,

=
,
- углы, измеряемые транспортиром по схеме.

Среднюю квадратическую ошибку координат, полученных как средние значения из двух вариантов, вычислила по формуле:

(11).

Из формулы (10) средняя квадратическая ошибка положения определяемого пункта:

Из формулы (11) нашла среднюю квадратическую ошибку координат, полученных как средние значения из двух вариантов:


Итак, в этой задаче было решено два наилучших варианта засечки. Для решения задачи была построена схема расположения определяемого и исходных пунктов, выбраны наилучшие варианты засечки с помощью инверсионных треугольников, решены эти варианты засечки. Координаты пункта Р, полученные в двух вариантах, оказались в допуске и за окончательные значения координат были приняты их средние значения: среднее Х=6890,005 м, среднее Y=3400,585 м.

Вычисления были выполнены со следующими ошибками:

- средняя квадратическая ошибка положения определяемого пункта: mp1=0,036 м и mp2=0,031 м

- средняя квадратическая ошибка координат, полученных как средние значения из двух вариантов: МpСр=0,02 м

уравнивание геодезическая сеть сгущение засечка


3. Уравнивание ходов полигонометрии второго разряда, образующих одну узловую точку

3.1 Общие указания и исходные данные

ПОЛИГОНОМЕТРИЯ (от греч. polygonos - многоугольный и ...метрия), метод определения взаимного положения точек земной поверхности для построения опорной геодезической сети путем измерения длин прямых линий, связывающих эти точки, и горизонтальных углов между ними. Применяется в залесенной и застроенной местности вместо триангуляции.