Смекни!
smekni.com

Уравнивание геодезических сетей сгущения упрощенным способом (стр. 4 из 5)

Относительную невязку вычислила по формуле:


(22)

и сравнила с величиной 1/5000, невязка меньше этой величины, следовательно, она допустима.

Ввела поправки в приращения координат пропорционально длинам сторон.

После уравнивания приращений координат вычислила координаты всех точек ходов.

Вычисления задания представлены в таблице 10.

Таблица 10 – Вычисления при уравнивании ходов полигонометрии второго разряда

углы дирекционные углы стороны приращения координат координаты
град. мин. сек. град. мин. сек. ∆Х ∆Y X Y
1 2 3 4 5 6 7 8 9 10 11 12
первый ход
В
324 17 33
А 315 7 35 +0,01 2349486,73 9475377,1
189 09 58 497,140 -490,79 -79,19
1 180 56 36 2348995,95 9475297,9
188 13 22 502,751 -497,58 -71,90
2 179 4 17 2348498,37 9475226,0
189 09 04 500,857 -494,48 -79,65
3 180 13 32 2348003,89 9475146,3
188 55 33 511,387 -505,19 -79,34
4 180 25 45 +0,01 2347498,70 9475067,0
188 29 48 478,306 -473,06 -70,67
5 180 0 44 2347025,65 9474996,3
188 29 04 511,497 -505,90 -75,47
6 169 23 44 2346519,75 9474920,9
199 05 20
7
1385 12 10 3001,938 -2967 -456,22
второй ход
1 2 3 4 5 6 7 8 9 10 11 12
144 17 33
В 66 49 31 -0,01 2346805,92 9477304,01
257 28 01 512,727 -111,26 -500,51
13 180 0 18 -0,01 2346694,66 9476803,49
257 27 43 508,706 -110,43 -496,57
14 179 59 42 -0,01 -0,01 2346584,23 9476306,91
257 28 01 521,445 -113,15 -509,02
15 180 0 3 2346471,07 9475798,88
257 27 58 427,178 -92,70 -416,99
16 150 22 50 -0,01 2343378,37 9475380,89
287 05 07 481,219 141,38 -459,98
6 267 59 46 2346519,75 9474920,90
199 05 20
7
1025 12 08 2451,275 -286,16 -2383,07
третий ход
В
220 24 59
С 27 23 1 -0,01 +0,01 2343535,03 9474518,65
13 01 58 504,716 491,72 113,82
12 180 7 35 -0,01 2344026,74 9474632,48
12 54 24 506,8 494,00 113,20
11 179 55 47 +0,01 2344520,73 9474745,68
12 58 37 497,121 484,42 111,63
10 180 1 19 +0,01 2345005,15 9474857,32
12 57 18 454,503 442,93 101,89
9 202 28 30 +0,01 2345448,08 9474959,22
350 28 48 411,747 406,08 -68,09
8 183 44 41 +0,01 2345854,16 9474891,14
346 44 07 354,236 344,79 -81,28
7 147 38 46 +0,01 2346198,95 9474809,87
379 05 20 339,469 320,80 111,02
6 2346519,75 9474920,90
1101 19 47 3068,592 2984,74 402,19

При решении этой задачи я научилась уравнивать ходы полигонометрии второго разряда раздельным способом. Усвоила, что при этом способе необходимо сначала уравнять углы, затем уравнивать приращения координат и уже по уравненным приращениям вычислять координаты.


4. Уравнивание ходов технического нивелирования способом полигонов профессора В.В. Попова

4.1 Общие указания и исходные данные

Простой и в то же время строгий способ уравнивания ходов технического нивелирования способом полигонов предложил профессор В.В.Попов. Этот способ сводится к последовательному распределению невязок в каждом полигоне пропорционально длинам ходов. При этом если в соседнем полигоне уже было произведено распределение невязок, то на величину поправки, пришедшейся на общий обоим полигонам ход, нужно предварительно исправить с учётом её знака невязку этого подлежащего увязанию полигона. Таким образом, дело сводится к методу последовательных приближений. Применение способа Попова требует расположения вычислений в определенной схеме. Удобно эти вычисления производить на схеме расположения ходов, как это рекомендует сам автор.

Перед уравниваем я вычертила схему нивелирной сети (приложение Г), на которую выписала по ходам и полигонам периметры, измеренные превышения, фактические и допустимые невязки в сумме превышений по полигонам. Для установления знака невязки направление обхода в каждом полигоне выбрала по ходу часовой стрелки. Контролем правильности вычисления невязок является условие [fh]=0. вычислила допустимые невязки по формуле:

fh доп= ±20√L(23),

где L – периметр полигона, км.

Предварительно исправила исходные данные, учитывая свой порядковый номер. Эти вычисления производятся в таблице 11. Длину ходов вычислила по формуле:

, (24),

∆l = +0.2км * №=0,16 км. Высота исходных реперов HRp1=106.985 –

3мм * №=106,973 м, HRp2=100.132 м.

4.2 Уравнивание превышений по способу полигонов профессора В.В.Попова

Далее вычертила схему независимых нивелирных полигонов, на которую выписала невязки полигонов (приложение Д). Невязки в превышениях выписаны внутри соответствующих полигонов в прямоугольных рамках. Полигоны пронумерованы.

Рядом с ходами, идущими по периметру полигонов, подготовила таблички для записи значений поправок. Поправки по каждому ходу выбрасывались за полигон, таким образом для внутренних ходов – по две таблички и по одной с каждой внешней стороны.

Для каждого хода вычислила коэффициент пропорциональности или «красные числа» по формуле:

ri=

(25),

где Li – длина хода, [L] – периметр хода. Найденные отношения выписала на схему над табличками поправок для каждого хода красным цветом. Контролем правильности вычисления этих чисел является равенство

=
по каждому полигону (например, для полигона I «красные числа» получились 0.22, 0.25, 0.28, 0.25, в сумме они действительно дают единицу).

Начала распределение невязок с полигона, имеющего наибольшую по абсолютной величине невязку. В моем варианте этим полигоном является полигон II с невязкой -14. Невязки в полигонах распределяют пропорционально «красным числам». Итак, умножала невязку полигона на соответствующие этому полигону «красные числа», округляя до целых, и записывала в таблички, лежащие вне полигона, причем со знаком, одинаковым знаку невязки. Контролем является: сумма поправок должна дать величину невязки.

Перешла к следующему полигону (III). В нем ход 12-13 уже получил поправку, поэтому невязку этого полигона следовало изменить на величину поправки хода 12-13. Полученная остаточная невязка вписывается в рамку под числом исходной невязки полигона III. Далее эту остаточную невязку умножала на соответствующие этому полигону «красные числа». Полученные поправки выписываем в рамки, находящиеся вне этого полигона. Каждый раз производила контроль вычислений!

И так далее, переходила к следующему полигону по часовой стрелке и выполняем те же операции (исправляла исходную невязку полигона с учетом поправок, пришедших из других полигонов, и распределяла поправки пропорционально «красным числам», выполняя контроль). Так, когда вернулась к полигону II, значит завершила первый круг распределения невязок. Перешла ко второму кругу, повторяя все в том же порядке.

В полигоне II невязку я уже распределила, но в этом полигоне имеются поправки, пришедшие из других полигонов. Сложив их, получила новую невязку этого полигона, которую должна распределить вышеописанным порядком, вписывая вторичные поправки по ходам в соответствующие рамки.

Таким же путем прошла по всем другим полигонам во втором круге. После перешла к третьему, четвертому и так далее. В моем случае, потребовалось пройти 5 кругов.

Теперь необходимо в каждой рамке подсчитать алгебраическую сумму поправок. Для внешних ходов нужно у найденных результатов сложения по каждому ходу изменить знак на обратный и перенести внутрь полигона. Так, например, у хода 2-12 поправка равна -19, перенеся ее внутрь II-ого полигона, получим поправку для хода 2-12, равную 19. Для общих ходов каждой пары смежных полигонов имеются по две рамки, расположенные по разные стороны хода. Вычислила поправки по каждому ходу как разность между суммами поправок по внутренней и внешней табличкам. Эти величины вписала при данном ходе, каждую внутри соответствующего полигона.