Смекни!
smekni.com

Экономическая оценка финансовых инвестиций с использованием Excel (стр. 1 из 2)

Тема 1. Процентные и дисконтные расчеты

Задача 1

Условие:

Капитал, величиной $2000 вложен с 6.07.93 по 6.07.96 под 100% годовых. Найти величину наращенного капитала.

Решение:

Предположим, что используется простой процент.

Тогда F = P * (1 + N * i),

где F – величина наращенного капитала.

F=2000*(1+3*1)=$8000.

Задача 2

Условие:

На сколько лет нужно вложить5000000 рублей при ставке 50% годовых, чтобы получить 80000000 рублей, при условии ежегодной капитализации процентов.

Решение:

Срок N вычислялся с использованием средств Microsoft Excel согласно следующей формуле:

КПЕР (j/m, 0,-P,F)/m, где

J – номинальная ставка

M – число начислений в году

Р – первоначальная сумма

F – конечная сумма

Значение функции КПЕР (0,5/1, 0,-5000000,80000000)/1=1,15

Задача 3

Условие:

16.09.96 учтен вексель сроком погашения 28.11.96. Вычислите номинальную стоимость векселя, если процентная ставка дисконтирования 100% годовых, а клиент получил 12000000.

Решение:

P=?

F=12000000

D=1

N=0.4

Расчет ведется в табличном процессоре по формуле многоразовой капитализации:

P=ПЗ (i/m, N*m, 0, -F)=ПЗ(1,0.4,0,-12000000)= 9 094 299,40р.

Задача 4

Условие:

Клиент вложил в банк 80 млн р на 6 лет. Определить сложную процентную ставку, если по истечении шести лет клиент получил 500 млн р.

Решение:

Р=80000000

N=6

F=500000000

I=?

Процентная ставка рассчитывалась в табличном редакторе по формуле

I=НОРМА (N,0,-P,F)=НОРМА(6,0,-80000000,500000000)=36%.

Задача 5

Условие:

Определите ставку непрерывных процентов при условии, что за 6 лет сумма выросла на 110%.

Решение:

J=?

N=6

F=1.1P

J=LN(F/P)/N*100%=LN(1.1P/P)/N*100%=LN(1.1)/6*100%=1.59%

Задача 6

Условие:

Найти эффективную ставку наращения соответствующую ставке непрерывной капитализации, равной 50% годовых.

Решение:

Сложный процент наращения рассмотрим в формуле:

F=P(1+i)^N, где

F – наращенная сумма

P – исходная сумма

I – процент

N – срок

Формула для непрерывной капитализации:


F=P*exp(j*N), где

J – ставка непрерывной капитализации и равна 0,5э

N примем за единицу, так как эффективная ставка – это годовая ставка сложных процентов с капитализацией процентов раз в год.

Таким образом, имеем две формулы:

F=P*exp(0.5) и F=P*(1+i),

откуда видно, что ставка наращения, соответствующая ставке капитализации может быть получена следующим образом: exp(0.5)=1+i или i=exp(0.5)-1=1.64-1=0.64

Таким образом I=64%

Задача 7

Условие:

Найти ставку наращения по сложным процентам, соответствующую эффективной ставке, равной 80 % годовых.

Решение:

Поскольку эффективная ставка – это и есть годовая ставка сложного процента с капитализацией раз в год, то ответом будет 80%.

Задача 8

Условие: Клиент вложил в банк 12000000 рублей на 3 года под 70 % годовых с капитализацией процентов 1 раз в полгода. За какой период он получил бы такую же сумму (при начальном вложении 12000000 рублей под 70 % годовых), если капитализация проводилась непрерывно?

Решение:

По формуле

F=P*(1+j/m)(N*m),

получим

F=12000000*(1+0.7/2)3*2= 72641341,69 рублей – наращенная сумма.

Для непрерывной капитализации срок рассчитывается по формуле

N=LN(F/P)/j=LN(72641341,69/12000000)/0.7=2,572325078 года.

Таким образом, при непрерывной капитализации, достаточно было бы двух с половиной лет.


Тема 2. Рентные расчеты

Задача 1

Условие:

Наращенная сумма ренты равна 500000, рента выплачивается ежегодно. Ставка 25% годовых, начисляемых в конце года. Найти современную величину ренты при условии, что рента выплачивается 7 лет.

Решение:

Рассматривается случай обычной ренты. Расчет ведется в табличном редакторе Microsoft Excel. Сначала рассчитывается выплата

Pmt=ППЛАТ(I;N;0;-S),

которая подставляется в формулу расчета современной величины ренты

А=ПЗ(I;N;-Pmt).

Итоговая таблица расчетов:

S 500000
I 0,25
N 7
Pmt 33 170,83р.
A 104 857,60р.

Задача 2

Условие: На счет фонда в начале каждого года на протяжении пяти лет поступают взносы по 1500 де. Начисление процентов поквартальное, номинальная ставка 25%. Определить накопленную сумму к концу срока.

Решение:

Имеем обычную ренту с многоразовой капитализацией.

Pmt=1500

M=4

J=0.25

N=5

S=?

Формула расчета в табличном процессоре:

БЗ(j/m; N* m;-Pmt)

S=------------------

БЗ(j/m; m; -1)

Итоговая таблица расчета:

j 0,25
N 5
Pmt 1 500
m 4
БЗ(j/m; N* m;-Pmt) 56 684,48р.
БЗ(j/m; m; -1) 4,39р.
S 12909,62686

Задача 3

Условие:

Имеется обязательство погасить в течении 10 лет долг, равный 8000 де. Под сколько процентов был выдан долг, если начисления производились поквартально и объем выплаты ежегодной суммы денег равняется 600 де.

Решение:

Для такого рода задач в табличном процессоре EXCEL имеется опция “ПОДБОР ПАРАМЕТРА” в меню “СЕРВИС”.

S=8000

N=10

M=4

Pmt=600

I=?

Используем формулу обычной ренты с многоразовой капитализацией.

БЗ(j/m; N* m;-Pmt)

S= ------------------

БЗ(j/m; m; -1)

i= 0,061037035

Задача 4

Условие:

Рассчитайте современную величину вечной ренты, член которой (10000 де) выплачивается в конце каждого месяца, процент равный 5% годовых начисляется 2 раза в год.

Решение:

J=0.05

M=2

Pmt=10000

P=12

Из условия задачи понятно, что процент начисляется на сумму 60000, которая была уплачена за полгода. Современная величина вечной ренты A=Pmt/I=60000/0.05= 1200000 де.


Задача 5

Условие: Пусть требуется выкупить (погасить единовременным платежом) вечную ренту, член которой (250000) выплачивается в конце каждого полугодия, процент, равный 25% годовых начисляется 4 раза в год. Рассчитайте современную величину вечной ренты.

Решение:

A=Pmt/i.

I=m*j=0.25*2. Это означает, что в полугодичный период процент составляет 50%. Таким образом, A=Pmt/I=250000/0.5=500000.

Задача 6

Условие:

Величина займа равна 200 млн. Амортизация проводится одинаковыми аннуитетами в течение 10 лет при ставке 45% годовых. Капитализация процентов производится ежегодно. Составьте план погашения займа.

Решение:

Составим план погашения задолженности.

D=200 млн

I=0.45

N=10

ПЛАН ПОГАШЕНИЯ ЗАДОЛЖЕННОСТИ
Метод: погашение долга равными суммами
Параметры долга Долг 200000000
Процент 0,45
Срок 10
ГРАФИК ПОГАШЕНИЯ
Год Остаток долга Погашение долга Проценты Срочная уплата Выплаченный долг Выплаченные проценты
1 200000000 20000000 90000000 110000000 20000000 90000000
2 180000000 20000000 81000000 101000000 40000000 171000000
3 160000000 20000000 72000000 92000000 60000000 243000000
4 140000000 20000000 63000000 83000000 80000000 306000000
5 120000000 20000000 54000000 74000000 100000000 360000000
6 100000000 20000000 45000000 65000000 120000000 405000000
7 80000000 20000000 36000000 56000000 140000000 441000000
8 60000000 20000000 27000000 47000000 160000000 468000000
9 40000000 20000000 18000000 38000000 180000000 486000000
10 20000000 20000000 9000000 29000000 200000000 495000000

Задача 7

Условие:

Пусть годовая рента со сроком 5 лет и членом ренты 20000 де со ставкой 60% годовых заменяется квартальной рентой с теми же условиями. Найдите член ренты.

Решение:

Сначала посчитаем современную величину ренты.

N=5

I=0.6

Pmt=20000

Формула для табличного редактора:

А=ПЗ (i; N; -Pmt)=ПЗ(0,6;5;-20000)= 30 154,42

Теперь рассчитаем член квартальной ренты по формуле с многоразовой капитализацией


БЗ(j/m; m; -A)

Pmt=---------------

ПЗ(j/m; N* m; -1)

Расчет приведен в таблице:

N 5
j 0,6
m 4
A 30 154,42р.
БЗ(j/m; m; -A) 150 572,32р.
ПЗ(j/m; N* m; -1) 6,26р.
Pmt 24055,65552

Тема 3. Оценка инвестиций

Задача 1

Условие:

Проект требует инвестиций в размере 820000 тыс руб. На протяжении 15 лет будет ежегодно получаться доход 80000 тыс руб. Оценить целесообразность такой инвестиции при ставке дисконтирования 12%. Выбрать необходимую функцию табличного процессора и произвести расчет.

Решение:

Воспользуемся методом внутренней нормы доходности (IRR).

Построим таблицу, воспользуемся для расчетов функцией ВНДОХ.

Инвестиция -820000
1 80000
2 80000
3 80000
4 80000
5 80000
6 80000
7 80000
8 80000
9 80000
10 80000
11 80000
12 80000
13 80000
14 80000
15 80000
IRR 5%

IRR<12%. Следовательно, проект не целесообразен.


Задача 2

Условие:

Необходимо ранжировать два альтернативных проекта по критериям срок окупаемости, IRR, NRV, если цена капитала 12%

Решение:

A Б
-3000 -2500
1500 1800
3000 1500
Срок окупаемости 0,666667 0,757576
IRR 28% 21%
NRV 730,87р. 302,93р.

Таким образом, проект А выгоднее, нежели проект Б.

Задача 3

Условие:

Предприятие рассматривает необходимость приобретения новой технологической линии. На рынке имеются две модели со следующими параметрами. Обосновать целесообразность приобретения той или иной линии.

Показатели Вариант 1 Вариант 2
Цена 8500 11000
Генерируемый годовой доход 2200 2150
Срок эксплуатации 10 12
Ликвидационная стоимость 500 1000
Требуемая норма прибыли 12 12

Решение: