Смекни!
smekni.com

Проектирование и разработка нефтяных и газовых месторождений (стр. 5 из 5)

[Дж] (23)

Тогда общее количество энергии

(24)

Т.к. на устье скважины всегда есть некоторое противодавление Ру, то кол-во энергии, уносимое с жидкостью по аналогии:

(25)

Кол-во энергии, поступающей из пласта и затраченной на подъем жидкости от забоя до устья

(26)

Если фонтанный подъемник работает на оптимальном режиме, т.е. на режиме наибольшего к.п.д., то удельный расход газа R, необходимого для подъема 1 м3 жидкости, достигнет minRопт. В этом случае:

(27)

Следовательно, фонтанирование возможно, если

Wп ≥ Wн (28)

Отсюда Г0 ≥ Rопт (29)

На основании экспериментальных исследований А.П.Крыловым были получены формулы для определения удельного расхода газа Rmax при работе газожидкостного подъемника на режиме max подачи Qmax.

(30)

Rопт = Rmax (1 - ε) (31)

где ε – относительное погружение

(32)

Подставляя (32) и (30) в (31), получим

(33)

Таким образом, газовый фактор, определяющий количество м3 газа при стандартных условиях, находящегося в свободном состоянии пр среднем давлении в подъемнике, и отнесенное к 1 м3 жидкости (обводненной нефти) и будет эффективным газовым фактором Гэф. Тогда условие фонтанирования запишется:


Гэф ≥ Rопт (34)

или

(35)

Из неравенства (35) можно определить min необходимое давление на забое, обеспечивающее фонтанирование скважины. Решение неравенства относительно Рз можно получить, либо подбором Рз, либо графоаналитическим путем.

Если выделение газа начинается не на забое, а в фонтанных трубах на некоторой глубине Lнас, то

(36)

Решая это неравенство относительно Lнас, получим

(37)

Определив глубину Lнас можно определить min Рз

Рз = Рнас + (H – L) ρ · g (38)

где ρ – плотность насыщенной газом нефти.


Лекция №7-8

Расчет фонтанного подъемника

Дебиты фонтанных скважин изменяются в широких пределах как по количеству жидкости, так и по кол-ву попутного газа. Для обеспечения фонтанирования все скважины оборудуются фонтанными трубами НКТ, которые спускаются в скважину обычно до забоя. С помощью фонтанных труб (НКТ) скважины осваиваются, проводятся различные промывки, воздействие на забой и т.д.

Ø НКТ – 48, 60, 73, 89 и 102 мм наиболее употребительные (до 85%) – Ø 73 мм.

Всякий подъемник работает при относительном погружении

Обычно эти пределы лежат 0,3 – 0,65.

0,3 < ε < 0,65 – к.п.д. подъемника наивысший.

По А.П.Крылову

(м3/с) (39)

qопт =qmax (1- ε)

м3/с) (40)

Если Рб > Рнас, то в ф. (39) и (40) вместо Рб - Рнас, L – Lнас.


Эти формулы можно решить относительно d:

(м) (41)

(м) (42)

По этим формулам определяется d фонтанных труб, необходимый для обеспечения max и опт подачи.

Расчет фонтанного подъемника сводится к определению для проектируемой скважины max и опт подач. Планируемый дебит скважины должен лежать в пределах между qmax и qопт. Это гарантирует высокий к.п.д. и устойчивую его работу. С течением времени условия фонтанирования ухудшаются: расчет обводненность, падает Рпл, Гэф уменьшается. Поэтому планируя фонтанную эксплуатацию, рекомендуют рассчитывать фонтанные подъемники по max подаче – для начальных условий и по опт – для условий конца фонтанирования.

При установившейся работе системы пласт-скважина Рз может быть найдено из условия равенства притока и подачи фонтанного подъемника.

qn = K (Рn - Рз)n (43)

если трубы спущены до забоя, то Рб - Рз, если они подняты выше (L<H), то

Рз = Рб + (H -L) · g · ρ (44)


с учетом (44) ф-ла (43) имеет вид

qn = K [Рn - Рб - (H -L) · g · ρ]n (45)

приравнивая правые части формулы притока (45) и ф-лы пропускной способности подъемника (39) получим:

K [Рn - Рб - (H -L) · g · ρ]n=

(46)

Решение равенства (46) получается либо путем подбора Рб, либо графоаналитическим путем. Затем определяется соответствующий дебит скважины путем подстановки Рб в (45) или в (39).

Найденный таким образом, дебит, отвечающий совместной работе пласта и фонтанного подъемника, соответствует работе подъемника при режиме max подачи. Для определения qопт приравниваем правые части ф. (45) и (40).

K [Рn - Рб - (H -L) · g · ρ]n=

(47)
Лекция № 9-10

Расчет процесса фонтанирования с помощью кривых распределения давления

Зная дебит, газовый фактор, плотность нефти, воды и обводненность продукции, а также другие данные строим КРД р(х), начиная от точки с известным давлением Рз.

П рис.3 длина участка НКТ от забоя до точки с Рнас, на котором будет двигаться однородная жидкость обозначена h, тогда

Рз = Рг + Ртр + Рнас (48)

где Рг = ρж · g · h

подставляя значения Рг и Ртр и решая относительно h:

(49)

слагаемое

очень мало и им можно пренебречь.

На остальной длине НКТ, равной L - h, т.е. от точки Рнас и выше, будет происходить движение ГЖС, поэтому давление на устье будет:


Если башмак НКТ выше забоя на величину а = H –L, то на этом участке при расчете КРД вместо диаметра труб берется диаметр обсадной колонны.

Рассчитав КРД т определив значение Ру при заданном режиме работы скважины, сопоставим вычисленную величину Ру с возможным давлением в выкидной линии Рл, по которому продукция скважины поступает в систему сбора промысла. Если Ру > Рл, то работа скважины на рассчитанном режиме возможна, а избыточное давление на устье Ру - Рл = ΔРшт должно быть понижено созданием дополнительного гидравлического сопротивления в виде регулируемого штуцера, в котором поток ГЖС дросселируется с Ру до Рл.

Если при расчете окажется, что Ру < Рл, то фонтанирование скважины невозможно. В этом случае необходимо задаться меньшим отбором Q, при котором давление на забое возрастает, что приведет к увеличению Ру. Изменяя Q, можно подобрать такие соотношения, при которых Ру ≥ Рл, когда фонтанирование будет возможно.

Эта система расчета процесса фонтанирования может быть повторена для труб меньшего или большего диаметра для определения возможных режимов фонтанирования.

Рассмотрим общий случай определения всего комплекса возможных и невозможных условий фонтанирования скважин. При этом будем считать, что все проектируемые отборы жидкости из пласта допустимы и не противоречат принципам рациональной разработки залежи.

Задаемся несколькими забойными давлениями Рci, которые находятся в пределах Рпл и Рmin – min давление на забое, при котором фонтанирование скважины неосуществимо, т.е.


Рmin < Рci < Рпл

Для принятых значений Рci определяем приток жидкости в скважину Qi по уравнению притока или по индикаторной линии. Задаемся диаметром НКТ и рассчитываем распределение давления р(х) снизу вверх для принятых значений Рci и соответствующих им кривых р(х) (см. рис. 4).

Получаем систему данных, состоящих из Рci, Qi и Pyi. Увеличение давления на забое Рci вызывает уменьшение притока Qi и соответственно увеличение давления на устье Pyi, т.е.

Рс1 > Рс2 > Рс3 > …….. > Рci

Q1 < Q2 < Q3 < …….. < Qi (50)

Ру1 > Ру2 > Ру3 > …….. > Pyi

По полученным данным (50) можно построить две графические зависимости Q = f1 (pc) и Ру = f2 (pc) (см. рис. 5).

Рис.5. Согласование индикаторной линии (1) с зависимостью Ру = f2 (pc) (2)

По рис. 5 графики (1) и (2) отражают совместную работу пласта и газожидкостного подъемника. Точки а-b разделяют возможные и невозможныережимы фонтанирования. На оси Ру откладываем давление в выкидной линии Рл. По которой скважинная продукция поступает в систему сбора. Точка а соответствует min допустимому давлению на устье (Ру = Рл), а ее проекция на ось Рс определит Ркр – критическое забойное давление, соответствующее этому режиму работы. Точка b – критический дебит Qкр, превышение котрого приведет к Ру < Рл. Таким образом, область режимов, лежащая влево от линии а-b – нереальная, а область режимов, лежащая вправо – осуществима, т.к. при этих условиях пластовая энергия превышает необходимую для подъема жидкости. Избыток энергии обуславливает устьевое давление Ру, которое превышает давление в выкидной линии Рл. Этот избыток энергии поглощается штуцером, в котором создается перепад давлений ΔРшт = Ру - Рл.