Смекни!
smekni.com

Направленное бурение скважин (стр. 5 из 9)

При бурении скважин с кустовых площадок на длину верхнего вертикального участка накладывается еще ряд требований, связанных с необходимостью исключения пересечения стволов. Эти требования будут рассмотрены ниже в разделе 8.1.

4. Выбирается КНБК, обеспечивающая необходимую интенсивность искусственного искривления, которая не должна превышать ранее рассчитанную максимальную интенсивность искривления. В ряде случаев, наоборот, сначала может быть принята КНБК и по ней определяется интенсивность искусственного искривления.

Интенсивность искривления на участках естественного уменьшения зенитного угла устанавливается исходя из практического опыта.

5. По величине интенсивности искусственного искривления определяются радиусы кривизны R соответствующих интервалов по формуле (3).

Полученные величины радиусов сравниваются с минимально допустимыми и при необходимости корректируются.

6. Производится расчет профиля, т. е. определяется необходимый зенитный угол скважины в конце интервала набора кривизны, проекции всех интервалов на горизонтальную и вертикальную плоскость, их длины, глубина скважины по вертикали, отход (смещение) и глубина скважины по стволу. Рассчитанные глубина по вертикали и смещение сравниваются с заданными, что является проверкой правильности всех расчетов.

В приведенных ниже формулах приняты следующие условные обозначения:

h - глубина скважины по вертикали, м;

S - общий отход скважины (смещение), м;

Hn - вертикальная проекция n- го интервала, м;

Sn - горизонтальная проекция n- го интервала, м;

ln - длина n- го интервала, м;

Rn - радиус кривизны n- го интервала, м;

L - глубина скважины по стволу, м;

Qn - зенитный угол скважины в конце n- го интервала, град.

4.3.1 Трехинтервальный профиль

При третьем прямолинейном интервале профиля (рис. 10, а) расчет ведется по следующей схеме

Q2 = arccos {[R2. (R2 - S)] + H . [(H2 +S2 - 2R2. S)]0,5}/ [(R2 - S)2 + H2], (39)

где H = h - H1.

l2 = 0,01745 . R2. Q2, (40)

H2 = R2. sin Q2, (41)

S2 = R2. (1 - cos Q2), (42)

l3 = (H - H2)/cos Q2 , (43)

H3 = h - H1 - H2, (44)

S3 = (H - H2) . tg Q2, (45)

L = H1 + l2 + l3. (46)

4.3.2. Четырехинтервальный профиль

При проектировании скважин с четырехинтервальным профилем (рис. 11) в качестве исходных данных, кроме глубины скважины по вертикали h, отхода S, глубины вертикального участка H1, радиусов кривизны R2 и R4, вводится зенитный угол скважины в конце второго интервала Q2. Его величина определяется либо нормативно (в ряде случаев зенитный угол скважины не может превышать определенной величины, например, 20О), либо берется несколько больше, рассчитанной по формуле (39). Далее определяется длина третьего прямолинейного участка по формуле

l3 = A - B, (47)

где A = [(h - H1 - R2. sin Q2) / cos Q2] -ôS - Bô. sin Q2, (48)

В = R2 (1 - cos Q2) + (h - H1 - R2. sin Q2) tg Q2. (49)

Зенитный угол скважины на конечной глубине Q4 определяется по формуле

Q4 = Q2 - arctg [C/(R42 - C2)0,5], (50)

где C = [ 2R4 ôS - Bô cos Q2 - (S - B)2 cos2 Q2]0,5. (51)

Параметры второго интервала определяются по формулам (40), (41) и (42).

Для третьего интервала глубина по вертикали h3 и отход S3 определяются из выражений

h3 = l3. cos Q2, (52)

S3 = l3. sin Q2. (53)

Для четвертого интервала параметры профиля определяются по формулам

l4 = 0,01745 . R4 (Q2 - Q4), (54)

S4 = R4 (cos Q4 - cos Q2). (55)

5. Технические средства направленного бурения

Для искусственного искривления скважин в требуемом направлении используются различные технические средства, называемые отклонителями. При роторном бурении технические средства и технология искусственного искривления более сложны, поэтому чаще используются отклонители с забойными двигателями. Далее рассматриваются только такие отклонители. С их помощью на породоразрушающем инструменте создается отклоняющая сила, или между осью скважины и осью породоразрушающего инструмента возникает некоторый угол перекоса. Зачастую эти отклоняющие факторы действуют совместно, но какой-либо из них имеет превалирующее значение. При этом доказано, что для любой отклоняющей компоновки при отсутствии прогиба турбобура и разработки ствола скважины при любых соотношениях диаметров долота и турбобура, искривление ствола вследствие фрезерования стенки скважины в 4,84 раза больше, чем в результате асимметричного разрушения забоя [3]. Если происходит прогиб забойного двигателя, то доля искривления ствола за счет асимметричного разрушения породы на забое будет еще меньше.

В случае, если искривление происходит в основном за счет фрезерования стенки скважины, то такие отклонители называются с упругой направляющей секцией, а если за счет перекоса инструмента - с жесткой направляющей секцией.

К наиболее распространенным отклонителям относится кривой переводник, показанный на рис. 12. Он представляет собой обычный переводник, присоединительные резьбы которого выполнены под углом друг к другу. Этот угол составляет от 1 до 4О.

Кривой переводник включается в компоновку между забойным двигателем и УБТ. В результате большой жесткости УБТ в забойном двигателе возникает изгиб, и на породоразрушающем инструменте возникает отклоняющая сила. Величина ее существенно зависит от длины и жесткости забойного двигателя, поэтому кривые переводники используются с односекционными или укороченными турбобурами и винтовыми забойными двигателями.

Интенсивность искривления скважины при применении кривых переводников зависит от угла перекоса резьб, геометрических, жесткостных и весовых характеристик компоновки, режима бурения, фрезерующей способности долота, физико-механических свойств горных пород, зенитного угла скважины. Поэтому она колеблется в широких пределах от 1 д 6 град/10 м.

Максимальный зенитный угол, который может быть достигнут при применении кривого переводника с односекционным турбобуром, составляет 40-45О [2]. При необходимости достижения больших зенитных углов следует использовать укороченные или короткие забойные двигатели.

К бесспорным преимуществам кривого переводника относится его простота, однако при его использовании ухудшаются условия работы забойного двигателя за счет упругой деформации, интенсивность искривления из-за указанных выше факторов колеблется в широких пределах, породоразрушающий инструмент из-за наличия отклоняющей силы работает в более тяжелых условиях.

Турбинные отклонители серии ТО (рис. 13) состоят из турбинной 1 и шпиндельной 2 секций. Корпуса секций соединяются между собой кривым переводником 3, позволяющим передавать осевую нагрузку. Крутящий момент от вала турбинной секции к валу шпинделя, располагающихся под углом друг к другу, передается кулачковым шарниром 4. Максимальный угол перекоса осей присоединительных резьб кривого переводника g может быть определен по формуле [1]

g = 57,3(2l1 - l2)(D - d)/ 2l12, (56)

где l1 - расстояние от торца долота до кривого переводника, м; l2 - расстояние от кривого проводника до верхнего переводника отклонителя, м; D - диаметр долота, м; d - диаметр турбобура, м.

Величина l1 может быть определена из выражения

l1 = 23,9 [(D - d)/ i10]0,5, (57)

где i10 - желаемая интенсивность искривления скважины, град/10 м.

Предельное значение величины l2, при которой не происходит прогиба турбобура, определяется по формуле

l2 = 2,83 . l1. (58)

Угол перекоса резьб переводника серийно выпускаемых турбинных отклонителей составляет 1,5О, а диаметр корпуса 172, 195 и 240 мм. Интенсивность искривления ствола при их применении доходит до 3 град/10 м.

Преимуществами турбинных отклонителей являются приближение кривого переводника к забою скважины, в результате чего искривление ствола имеет более стабильный характер, мало зависящее от физико-механических свойств пород и технологии бурения. Использование нескольких турбинных секций (отклони­тели серии ОТС) позволяет увеличивать мощность и крутящий момент на долоте и применять такие отклонители в скважинах малого диаметра, т. е. там, где обычные кривые переводники не дают желаемых результатов.